-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfilter.go
153 lines (118 loc) · 3.15 KB
/
filter.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
package ranges
type filterResult[T any] struct {
cb func(element T) bool
ir InputRange[T]
isPrimed bool
}
func (r *filterResult[T]) prime() {
if !r.isPrimed {
for !r.ir.Empty() && !r.cb(r.ir.Front()) {
r.ir.PopFront()
}
r.isPrimed = true
}
}
func (r *filterResult[T]) Empty() bool {
r.prime()
return r.ir.Empty()
}
func (r *filterResult[T]) Front() T {
r.prime()
return r.ir.Front()
}
func (r *filterResult[T]) PopFront() {
r.prime()
for {
r.ir.PopFront()
if r.ir.Empty() || r.cb(r.ir.Front()) {
break
}
}
}
type filterForwardResult[T any] struct {
filterResult[T]
}
func (r *filterForwardResult[T]) Save() ForwardRange[T] {
return &filterForwardResult[T]{filterResult[T]{r.cb, r.ir.(ForwardRange[T]).Save(), r.isPrimed}}
}
// Filter filters down to elements where `cb(element)` returns `true`
func Filter[T any](r InputRange[T], cb func(element T) bool) InputRange[T] {
return &filterResult[T]{cb, r, false}
}
// FilterF is `Filter` where the range can be saved.
func FilterF[T any](r ForwardRange[T], cb func(element T) bool) ForwardRange[T] {
return &filterForwardResult[T]{filterResult[T]{cb, r, false}}
}
// FilterS is `FilterF` accepting a slice.
//
// Returns a ForwardRange, which is more efficient when moving forwards.
// `FilterSB` can be advanced in both directions.
func FilterS[T any](slice []T, cb func(element T) bool) ForwardRange[T] {
return FilterF(SliceRange(slice), cb)
}
type filterBidirectionalResult[T any] struct {
cb func(element T) bool
br BidirectionalRange[T]
isPrimed bool
}
func (r *filterBidirectionalResult[T]) prime() {
if !r.isPrimed {
for !r.br.Empty() && !r.cb(r.br.Front()) {
r.br.PopFront()
}
for !r.br.Empty() && !r.cb(r.br.Back()) {
r.br.PopBack()
}
r.isPrimed = true
}
}
func (r *filterBidirectionalResult[T]) Empty() bool {
r.prime()
return r.br.Empty()
}
func (r *filterBidirectionalResult[T]) Front() T {
r.prime()
return r.br.Front()
}
func (r *filterBidirectionalResult[T]) PopFront() {
r.prime()
for {
r.br.PopFront()
if r.br.Empty() || r.cb(r.br.Front()) {
break
}
}
}
func (r *filterBidirectionalResult[T]) Back() T {
r.prime()
return r.br.Back()
}
func (r *filterBidirectionalResult[T]) PopBack() {
r.prime()
for {
r.br.PopBack()
if r.br.Empty() || r.cb(r.br.Back()) {
break
}
}
}
func (r *filterBidirectionalResult[T]) Save() ForwardRange[T] {
return r.SaveB()
}
func (r *filterBidirectionalResult[T]) SaveB() BidirectionalRange[T] {
return &filterBidirectionalResult[T]{r.cb, r.br.SaveB(), r.isPrimed}
}
// FilterB is `FilterF` that can move in both directions.
//
// This is less efficient for moving forward than `FilterF`, as the filtered
// range must be primed in both directions.
func FilterB[T any](r BidirectionalRange[T], cb func(element T) bool) BidirectionalRange[T] {
return &filterBidirectionalResult[T]{cb, r, false}
}
// FilterSB is `FilterB` accepting a slice.
//
// This is less efficient for moving forward than `FilterS`, as the filtered
// range must be primed in both directions.
func FilterSB[T any](slice []T, cb func(element T) bool) BidirectionalRange[T] {
return FilterB(SliceRange(slice), cb)
}