-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathanalyzeComplexity.m
212 lines (202 loc) · 7.7 KB
/
analyzeComplexity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
%% Analyze the data collected by runCrowdingSurvey.
experiment='runComplexity';
printFilenames=true;
makePlotLinear=false;
myPath=fileparts(mfilename('fullpath')); % Takes 0.1 s.
addpath(fullfile(myPath,'lib')); % Folder in same directory as this M file.
dataFolder=fullfile(fileparts(mfilename('fullpath')),'data');
cd(dataFolder);
close all
%% READ ALL DATA OF EXPERIMENT FILES INTO A LIST OF THRESHOLDS "oo".
vars={'condition' 'conditionName' 'dataFilename' ... % 'experiment'
'experimenter' 'observer' 'trials' 'thresholdParameter' ...
'eccentricityXYDeg' 'targetDeg' 'spacingDeg' 'flankingDirection'... %'targetHeightDeg' 'targetKind'
'viewingDistanceCm' 'durationSec' ...
'targetFont'...
'contrast' 'pixPerCm' 'nearPointXYPix' 'beginningTime' };
oo=ReadExperimentData(experiment,vars); % Adds date and missingFields.
%% CLEAN
clear ok
for oi=1:length(oo)
if streq(oo(oi).thresholdParameter,'size')
oo(oi).spacingDeg=nan;
oo(oi).flankingDirection='none';
end
oo(oi).experiment=experiment;
ok(oi)=~any(ismember(oo(oi).observer,{'','d'}));
end
oo=oo(ok);
%% SELECT CONDITION(S)
if isempty(oo)
error('No conditions selected.');
end
% Report the relevant fields of each file.
t=struct2table(oo);
t=sortrows(t,{'thresholdParameter' 'observer' 'eccentricityXYDeg' });
if printFilenames
fprintf('Ready to analyze %d thresholds:\n',length(oo));
switch experiment
case 'runCrowdingSurvey'
disp(t(:,{'observer' 'targetFont' 'targetDeg' ...
'thresholdParameter' ...
'eccentricityXYDeg' 'spacingDeg' ...
'dataFilename' ...
}));
end
end
sizeRows=ismember(t.thresholdParameter,{'size'});
t=t(sizeRows,{'targetFont' 'targetDeg' 'observer' });
tt=sortrows(t,{'targetFont','observer'});
disp(tt)
writetable(tt,'ComplexitySize.xlsx');
return
%% COMPUTE MEAN FOR EACH OBSERVER FOR EACH MEASURE
% Replace repeated measures by their mean.
% The new table has the mean of each observer, at each location and
% flankingDirection.
% t=sortrows(t,{'eccentricityXYDeg','thresholdParameter','observer'});
tmean=table();
t(:,'n')={1}; % Number of thresholds represented by each row.
i=1;
while ~isempty(t)
if i>1
tmean(i,:)=tmean(1,:); % Add a row.
end
tmean(i,t.Properties.VariableNames)=t(1,:);
tmean(:,{'spacingDeg' 'targetDeg'})=[];
match=ismember(t{:,'observer'},t{1,'observer'}) ...
& ismember(t.eccentricityXYDeg(:,1),t(1,:).eccentricityXYDeg(:,1)) ...
& ismember(t.flankingDirection,t(1,:).flankingDirection);
tmean(i,'n')={sum(match)};
if sum(match)==0
error('No match.');
end
tmean(i,'logSpacingDegMean')={mean(log10(t{match,'spacingDeg'}))};
tmean(i,'logSpacingDegSD')={std(log10(t{match,'spacingDeg'}))};
tmean(i,'logSpacingDegN')={length(log10(t{match,'spacingDeg'}))};
tmean(i,'logAcuityDegMean')={mean(log10(t{match,'targetDeg'}))};
tmean(i,'logAcuityDegSD')={std(log10(t{match,'targetDeg'}))};
tmean(i,'logAcuityDegN')={length(log10(t{match,'targetDeg'}))};
t(match,:)=[];
i=i+1;
end
t=tmean;
clear height
fprintf('Repeated measures have been replaced by their means. %d thresholds over %d conditions.\n',sum(t.n),height(t));
disp(t(:,{'thresholdParameter','observer','n','eccentricityXYDeg', ...
'flankingDirection'}));
%% PLOT HISTOGRAMS (ACROSS OBSERVERS & HEMISPHERES) OF THREE KINDS OF THRESHOLD. AT ±10,0 DEG.
figure;
width=25;
height=50;
set(0,'units','centimeters');
screenSize=get(groot,'Screensize');
set(gcf,'units','centimeters','position',[screenSize(3)-width,0,width,height])
plusMinus=char(177);
for type=1:3
switch type
case 1
ok=streq(t.thresholdParameter,'size');
x=t(ok,:).logAcuityDegMean;
name='Acuity (deg)';
m=mean(x);
sd=std(x);
se=mean(t(ok,:).logAcuityDegSD./sqrt(t(ok,:).logAcuityDegN))/sqrt(length(x));
name=sprintf('%s, mean %.1f%c%.1f, Retest SE %.2f',name,m,plusMinus,sd,se);
case 2
ok=streq(t.thresholdParameter,'spacing') & streq(t.flankingDirection,'radial');
x=t{ok,'logSpacingDegMean'};
name='log Radial crowding distance (deg)';
m=mean(x);
sd=std(x);
se=mean(t(ok,:).logSpacingDegSD./sqrt(t(ok,:).logSpacingDegN))/sqrt(length(x));
name=sprintf('%s, mean %.1f%c%.1f, Retest SE %.2f',name,m,plusMinus,sd,se);
case 3
ok=streq(t.thresholdParameter,'spacing') & streq(t.flankingDirection,'tangential');
x=t{ok,'logSpacingDegMean'};
name='log Tangential crowding distance (deg)';
m=mean(x);
sd=std(x);
okPositive=ok & t.logSpacingDegSD>0;
se=mean(t(okPositive,:).logSpacingDegSD./sqrt(t(okPositive,:).logSpacingDegN))/sqrt(length(x));
name=sprintf('%s, mean %.1f%c%.1f, Retest SE %.2f',name,m,plusMinus,sd,se);
% case 4
% ok=streq(t.thresholdParameter,'spacing') & streq(t.flankingDirection,'radial');
% x=t{ok,'logSpacingDegMean'};
% ok=streq(t.thresholdParameter,'spacing') & streq(t.flankingDirection,'tangential');
% y=t{ok,'logSpacingDegMean'};
% x=x-y;
% name='log Radial:Tangential ratio';
% m=mean(x);
% sd=std(x);
% name=sprintf('%s, mean %.1f%c%.1f',name,m,plusMinus,sd);
% case 5
% ok=streq(t.thresholdParameter,'spacing') & streq(t.flankingDirection,'tangential');
% x=t{ok,'logSpacingDegMean'};
% ok=streq(t.thresholdParameter,'size');
% y=t(ok,:).logAcuityDegMean;
% x=x-y;
% name='log Tangential crowding:Acuity ratio';
% m=mean(x);
% sd=std(x);
% name=sprintf('%s, mean %.1f%c%.1f',name,m,plusMinus,sd);
end
if sum(ok)==0
continue
end
i=find(ok);
parameter=name;
subplot(3,1,type)
histogram(x,'BinWidth',0.1);
ylabel('Count');
xlabel([parameter]);
title(sprintf('Histogram of %d hemispheres at (%c%.0f,%.0f) deg',...
length(x),plusMinus,abs(t{i(1),'eccentricityXYDeg'})));
ax=gca;
ax.FontSize=12;
yticks(unique(round(ax.YTick)));
if ax.YLim(2)>4
ax.YMinorTick='on';
end
end
if true
% Align x axes of radial and tangential histograms.
subplot(3,1,2)
ax=gca;
radialXLim=ax.XLim;
subplot(3,1,3)
ax=gca;
tangentialXLim=ax.XLim;
ax.XLim(1)=min([radialXLim(1) tangentialXLim(1)]);
ax.XLim(2)=max([radialXLim(2) tangentialXLim(2)]);
subplot(3,1,2)
ax=gca;
ax.XLim(1)=min([radialXLim(1) tangentialXLim(1)]);
ax.XLim(2)=max([radialXLim(2) tangentialXLim(2)]);
end
%% SAVE PLOT TO DISK
figureTitle='Histograms';
graphFile=fullfile(fileparts(mfilename('fullpath')),'data',[figureTitle '.eps']);
saveas(gcf,graphFile,'epsc')
graphFile=fullfile(fileparts(mfilename('fullpath')),'data',[figureTitle '.fig']);
saveas(gcf,graphFile)
fprintf('Figure saved as ''/data/%s.eps'' and ''/data/%s.fig''\n',figureTitle,figureTitle);
%% SAVE TO DISK AS CSV AND FIG FILES
printConditions=true;
saveSpreadsheet=true;
vars={'thresholdParameter' 'observer' 'eccentricityXYDeg' 'flankingDirection' ...
'experiment' 'experimenter' 'trials' 'contrast' ...
'targetDeg' 'spacingDeg' 'durationSec' ...
'viewingDistanceCm' ...
'dataFilename'};
t=struct2table(oo,'AsArray',true);
t=sortrows(t,{'thresholdParameter' 'observer' 'eccentricityXYDeg' });
dataFilename=[experiment '.csv'];
if saveSpreadsheet
spreadsheet=fullfile(fileparts(mfilename('fullpath')),'data',dataFilename);
writetable(t,spreadsheet);
fprintf('Spreadsheet saved as: /data/%s\n',dataFilename);
end
if printConditions
disp(t(:,vars));
end