-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfunctions.community_similarity.R
585 lines (555 loc) · 25.2 KB
/
functions.community_similarity.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#!/usr/bin/Rscript
################################################################################
#Interaction-adjusted beta diversity (community similarity) estimation.
#
#Functions to calculate community similarities
#
#2015-08-31
################################################################################
################################################################################
################################################################################
# Load Packages
library("foreach")
library("doMC")
library("iterators")
library("doParallel")
library("parallel")
library("Matrix")
library("bigmemory")
library("biganalytics")
library("gplots")
library("ggplot2")
library("grid")
library("gridExtra")
library("data.table")
library("plyr")
library("ape")
library("phyloseq")
library("vegan")
library("RColorBrewer")
################################################################################
################################################################################
################################################################################
################################################################################
#Define functions
########################
#SparCC correlation analysis
#=> following Friedman & Alm, PLOS Comp Biol, 2012, http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002687
#=> expects an OTU table in which OTUs are rows, samples are columns
sparcc <- function(otu.table, size.thresh=1, pseudocount=10^-6, nblocks=400, use.cores=detectCores()) {
########################
#Load packages for parallel processing
require("foreach");
require("bigmemory");
require("biganalytics");
library("doMC", quietly=T);
#Register cluster
registerDoMC(cores=use.cores);
########################
########################
#Filter OTU table by removing all OTUs that are observed less then <size.thresh> times across all samples
#=> their correlations to all other OTUs will be (manually) set to 0 later on
#Add pseudocount to all observed counts (to avoid issues with zeroes in log-space)
cat(paste("SparCC preallocation steps =>", Sys.time()), sep="\n");
remove.otus <- rowSums(otu.table) < size.thresh; keep.otus <- ! remove.otus;
#o.t <- otu.table[1:1000, ] + pseudocount;
o.t <- otu.table[! remove.otus, ] + pseudocount;
rm (otu.table)
otus <- rownames(o.t);
n.otu <- length(otus);
########################
########################
#Preallocate blocks for parallel processing & Aitchinson's T matrix
#=> based on https://gist.github.com/bobthecat/5024079
size.split <- floor(n.otu / nblocks);
if (size.split < 1) {size.split <- 1}
my.split <- list(); length(my.split) <- nblocks;
my.split[1:(nblocks-1)] <- split(1:(size.split*(nblocks-1)), rep(1:(nblocks-1), each = size.split));
my.split[[nblocks]] <- (size.split*(nblocks-1)):n.otu;
dat.split <- mclapply(my.split, function(g) {o.t[g,]}, mc.cores=use.cores);
#Get combinations of splits
my.combs <- expand.grid(1:length(my.split), 1:length(my.split));
my.combs <- t(apply(my.combs, 1, sort));
my.combs <- unique(my.combs);
#Preallocate Aitchinson's T matrix as big.matrix ("shared" in memory, so accessible from w/in foreach loop)
mat.T <- big.matrix(nrow=n.otu, ncol=n.otu, dimnames=list(otus, otus), shared=T);
mat.T.desc <- describe(mat.T);
cat(paste("Done with preallocations =>", Sys.time()), sep="\n");
########################
########################
#Compute Aitchinson's T matrix
#=> iterate through each block combination, calculate matrix
# between blocks and store them in the preallocated matrix on both
# symmetric sides of the diagonal
cat(paste("Starting parallel T matrix calculation =>", Sys.time()), sep="\n");
results <- foreach(i = 1:nrow(my.combs)) %dopar% {
#Get current combination
curr.comb <- my.combs[i, ];
#Get current data
g.1 <- my.split[[curr.comb[1]]];
g.2 <- my.split[[curr.comb[2]]];
dat.1 <- dat.split[[curr.comb[1]]];
dat.2 <- dat.split[[curr.comb[2]]];
#Get current part of Aitchinson's matrix
curr.T <- apply(dat.1, 1, function(x) {apply(dat.2, 1, function(y) {var(log(x/y))})});
#Store
curr.mat.T <- attach.big.matrix(mat.T.desc);
curr.mat.T[g.2, g.1] <- curr.T;
curr.mat.T[g.1, g.2] <- t(curr.T);
#Return
TRUE
}
cat(paste("Done with parallel T matrix calculation =>", Sys.time()), sep="\n");
########################
########################
#Compute component variations ("t_i")
cat(paste("Computing component variations =>", Sys.time()), sep="\n");
var.t <- colsum(mat.T);
cat(paste("Done with component variation calculations =>", Sys.time()), sep="\n");
#Estimate component variances ("omega_i") from t_i by solving a linear equation system
cat(paste("Estimating component variances from linear equation system =>", Sys.time()), sep="\n");
mat.a <- matrix(data=1, nrow=n.otu, ncol=n.otu); diag(mat.a) <- n.otu-1;
omega <- sqrt(solve(a=mat.a, b=var.t));
cat(paste("Done with component variation estimation =>", Sys.time()), sep="\n");
#Estimate pairwise correlations based on these values
cat(paste("Estimating correlations =>", Sys.time()), sep="\n");
mat.rho <- foreach(i = 1:n.otu, .combine='rbind', .multicombine=T) %dopar% {(omega[i]^2 + omega^2 - mat.T[i,]) / (2 * omega[i] * omega)}
rownames(mat.rho) <- rownames(o.t);
cat(paste("Done with correlation estimation; returning data matrix =>", Sys.time()), sep="\n");
########################
#Return
mat.rho
}
########################
########################
#Parallel computation of correlations
#=> between all columns of the input matrix
#=> following https://gist.github.com/bobthecat/5024079
cor.par <- function(mat, method="pearson", nblocks=400, use="na.or.complete", use.cores=detectCores()) {
########################
#Load packages for parallel processing
require("foreach");
require("bigmemory");
library("doMC", quietly=T);
#Register cluster
registerDoMC(cores=use.cores);
########################
########################
#Preallocate blocks for parallel processing
#=> based on https://gist.github.com/bobthecat/5024079
cat(paste("Correlation preallocation steps =>", Sys.time()), sep="\n");
n.el <- ncol(mat);
if (n.el < 2*nblocks) {return(cor(mat, method=method, use=use))}
size.split <- floor(n.el / nblocks);
if (size.split < 1) {size.split <- 1}
my.split <- list(); length(my.split) <- nblocks;
my.split[1:(nblocks-1)] <- split(1:(size.split*(nblocks-1)), rep(1:(nblocks-1), each = size.split));
my.split[[nblocks]] <- (size.split*(nblocks-1)):n.el;
dat.split <- mclapply(my.split, function(g) {as.matrix(mat[,g])}, mc.cores=use.cores);
#Get combinations of splits
my.combs <- expand.grid(1:length(my.split), 1:length(my.split));
my.combs <- t(apply(my.combs, 1, sort));
my.combs <- unique(my.combs);
#Preallocate correlation matrix as big.matrix ("shared" in memory, so accessible from w/in foreach loop)
mat.rho <- big.matrix(nrow=n.el, ncol=n.el, dimnames=list(colnames(mat), colnames(mat)), shared=T);
mat.rho.desc <- describe(mat.rho);
cat(paste("Done with preallocation steps =>", Sys.time()), sep="\n");
########################
########################
#Compute correlation matrix
#=> iterate through each block combination, calculate matrix
# between blocks and store them in the preallocated matrix on both
# symmetric sides of the diagonal
cat(paste("Starting parallel correlation computations =>", Sys.time()), sep="\n");
results <- foreach(i = 1:nrow(my.combs)) %dopar% {
#Get current combination
curr.comb <- my.combs[i, ];
#Get current data
g.1 <- my.split[[curr.comb[1]]];
g.2 <- my.split[[curr.comb[2]]];
curr.rho <- cor(x=dat.split[[curr.comb[1]]], y=dat.split[[curr.comb[2]]], method=method);
#Store
curr.mat.rho <- attach.big.matrix(mat.rho.desc);
curr.mat.rho[g.1, g.2] <- curr.rho;
curr.mat.rho[g.2, g.1] <- t(curr.rho);
#Return
TRUE
}
cat(paste("Done with correlation computation =>", Sys.time()), sep="\n");
########################
#Return
as.matrix(mat.rho);
}
########################
########################
#Traditional indices of community similarity
#=> formulated as distances/dissimilarities (not similarities)
#=> calculation in parallel (using mclapply)
community.similarity.par <- function(o.t, distance="jaccard", use.cores=detectCores()) {
########################
#Load packages for parallel processing
require("foreach");
require("bigmemory");
require("plyr");
library("doMC", quietly=T);
#Register cluster
registerDoMC(cores=use.cores);
########################
########################
samples <- colnames(o.t);
#Turn OTU table into list format
ot.occ.list <- apply((o.t > 0), 2, which);
#ot.count.list <- mclapply(seq(1,length(ot.occ.list)), function(i) {o.t[ot.occ.list[[i]],i]}, mc.cores=use.cores);
ot.count.list <- alply(o.t, .margins=2, .fun=function(o.vec) {o.vec[o.vec > 0]}, .parallel=T)
names(ot.occ.list) <- names(ot.count.list) <- samples;
########################
########################
#Compute community distance matrix
########################
#Classic, unweighted Jaccard
if (distance == "jaccard") {
cs.list <- mclapply(ot.occ.list, function(a.list) {unlist(lapply(ot.occ.list, function(b.list) {1 - (length(intersect(a.list, b.list)) / length(union(a.list, b.list)))}))}, mc.cores=use.cores);
}
########################
#Classic, weighted Jaccard
if (distance == "jaccard.abd") {
cs.list <- mclapply(ot.count.list, function(a.count) {
a.N <- sum(a.count); a.list <- names(a.count);
unlist(lapply(ot.count.list, function(b.count) {ab.shared <- intersect(a.list, names(b.count)); 1 - (sum(a.count[ab.shared]) + sum(b.count[ab.shared])) / (a.N + sum(b.count))}))
}, mc.cores=use.cores);
}
########################
#Classic, weighted Jaccard, based on fractions (more balancing for uneven sample sizes)
if (distance == "jaccard.abd.frac") {
cs.list <- mclapply(ot.count.list, function(a.count) {
a.N <- sum(a.count); a.list <- names(a.count); a.rel <- a.count / a.N;
unlist(lapply(ot.count.list, function(b.count) {
b.N <- sum(b.count); ab.shared <- intersect(a.list, names(b.count)); b.rel <- b.count / b.N;
1 - (0.5 * (sum(a.rel[ab.shared]) + sum(b.rel[ab.shared])))
}))
}, mc.cores=use.cores);
}
########################
#Classic, weighted Jaccard, based on fractions (more balancing for uneven sample sizes), Chao's version
#=> after Chao et al., 2005, Ecology Letters
if (distance == "jaccard.abd.frac_chao") {
cs.list <- mclapply(ot.count.list, function(a.count) {
a.N <- sum(a.count); a.list <- names(a.count); a.rel <- a.count / a.N;
unlist(lapply(ot.count.list, function(b.count) {
b.N <- sum(b.count); ab.shared <- intersect(a.list, names(b.count)); b.rel <- b.count / b.N;
U <- sum(a.rel[ab.shared]); V <- sum(b.rel[ab.shared]);
if (U == 0 & V == 0) {return(1)} else {return(1 - ((U*V) / (U + V - (U*V))))}
}))
}, mc.cores=use.cores);
}
########################
#Classic, weighted Jaccard, alternative formulation (Bray-Curtis-like)
if (distance == "jaccard.abd.alt") {
cs.list <- mclapply(ot.count.list, function(a.count) {
a.N <- sum(a.count); a.list <- names(a.count);
unlist(lapply(ot.count.list, function(b.count) {
b.list <- names(b.count);
ab.shared <- intersect(a.list, b.list); ab.union <- union(a.list, b.list);
a.freq <- b.freq <- numeric(length=length(ab.union)); names(a.freq) <- names(b.freq) <- ab.union;
a.freq[a.list] <- a.count; b.freq[b.list] <- b.count;
1 - (sum(pmin(a.freq, b.freq)) / sum(pmax(a.freq, b.freq)));
}))
}, mc.cores=use.cores);
}
########################
#Classic, weighted Jaccard, Chao's version
#=> after Chao et al., 2005, Ecology Letters
if (distance == "jaccard.abd.chao") {
cs.list <- mclapply(ot.count.list, function(a.count) {
a.N <- sum(a.count); a.list <- names(a.count);
unlist(lapply(ot.count.list, function(b.count) {
b.list <- names(b.count); b.N <- sum(b.count);
#Get shared taxa & union of taxa
ab.shared <- intersect(a.list, b.list); ab.union <- sort(union(a.list, b.list));
a.freq <- b.freq <- numeric(length=length(ab.union)); names(a.freq) <- names(b.freq) <- ab.union;
a.freq[a.list] <- a.count; b.freq[b.list] <- b.count;
#If no taxa are shared, return trivial (distance = 1), otherwise compute Chao distance
if (length(ab.shared) == 0) {d.chao <- 1} else {
#Which taxa observed in sample a are singletons in sample b and vice versa?
a_shared.b_singl <- which(a.freq >= 1 & b.freq == 1);
b_shared.a_singl <- which(a.freq == 1 & b.freq >= 1);
#How many shared taxa are singletons / doubletons in samples a & b?
f.a.singl <- length(b_shared.a_singl);
f.a.doubl <- length(which(a.freq == 2 & b.freq >= 1));
f.b.singl <- length(a_shared.b_singl);
f.b.doubl <- length(which(a.freq >= 1 & b.freq == 2));
if (f.a.doubl == 0) {f.a.doubl = 1}; if (f.b.doubl == 0) {f.b.doubl = 1};
#Get taxa abundance estimates for samples a & b
a.adjust <- ((b.N-1)/b.N)*f.b.singl/(2*f.b.doubl)*sum(a.freq[a_shared.b_singl] / a.N);
a.estimate <- sum(a.freq[ab.shared] / a.N) + a.adjust;
b.adjust <- ((a.N-1)/a.N)*f.a.singl/(2*f.a.doubl)*sum(b.freq[b_shared.a_singl] / b.N);
b.estimate <- sum(b.freq[ab.shared] / b.N) + b.adjust;
if (a.estimate > 1) {a.estimate = 1}; if (b.estimate > 1) {b.estimate == 1};
d.chao <- 1 - ((a.estimate * b.estimate) / (a.estimate + b.estimate - (a.estimate * b.estimate)));
if (d.chao < 0) {d.chao = 0}
}
#Return
d.chao
}))
}, mc.cores=use.cores);
}
########################
#Classic Bray-Curtis dissimilarity
if (distance == "bray_curtis") {
cs.list <- mclapply(ot.count.list, function(a.count) {
a.N <- sum(a.count); a.list <- names(a.count);
unlist(lapply(ot.count.list, function(b.count) {
b.N <- sum(b.count); b.list <- names(b.count);
ab.shared <- intersect(a.list, b.list); ab.union <- union(a.list, b.list);
a.freq <- b.freq <- numeric(length=length(ab.union)); names(a.freq) <- names(b.freq) <- ab.union;
a.freq[a.list] <- a.count; b.freq[b.list] <- b.count;
1 - (2 * (sum(pmin(a.freq, b.freq)) / (a.N + b.N)));
}))
}, mc.cores=use.cores);
}
########################
#Classic Morisita-Horn dissimilarity
if (distance == "morisita_horn") {
cs.list <- mclapply(ot.count.list, function(a.count) {
a.N <- sum(a.count); a.n <- length(a.count); a.list <- names(a.count);
a.simpson <- sum(a.count ^ 2) / (a.N ^ 2);
unlist(lapply(ot.count.list, function(b.count) {
#Get current summary statistics for B
b.N <- sum(b.count); b.n <- length(b.count); b.list <- names(b.count);
b.simpson <- sum(b.count ^ 2) / (b.N ^ 2);
#Get current freq vectors from intersect and union of a & b
ab.shared <- intersect(a.list, b.list); ab.union <- union(a.list, b.list);
a.freq <- b.freq <- numeric(length=length(ab.union)); names(a.freq) <- names(b.freq) <- ab.union;
a.freq[a.list] <- a.count; b.freq[b.list] <- b.count;
#Get summed abundance product
ab.prod <- sum(a.freq * b.freq);
#Return
1 - ((2 * ab.prod) / ((a.simpson + b.simpson) * a.N * b.N));
}))
}, mc.cores=use.cores);
}
########################
#Return
do.call("rbind", cs.list);
}
########################
########################
#Faster UniFrac
#=> see also http://github.com/joey711/phyloseq/issues/524
fasterUniFrac <- function(o.t, tree, distance="UniFrac_unweighted", blocksize=1000, use.cores) {
#Load packages for parallel processing
require("foreach");
require("bigmemory");
require("Matrix");
library("doMC", quietly=T);
#Register cluster
registerDoMC(cores=use.cores);
########################
########################
#Get data
sp.o.t <- Matrix(o.t, sparse=T); #Force sparse <<Matrix>> format
c.samples <- colnames(sp.o.t); #Assume that OTUs are rows in OTU table
c.sample.sizes <- colSums(sp.o.t);
n.sample <- length(c.samples);
#Match OTU names in OTU table to tree edges
if( !all(rownames(sp.o.t) == taxa_names(tree)) ){sp.o.t <- sp.o.t[taxa_names(tree), ]}
#Get N x 2 matrix of pairwise combinations of samples
spn <- combn(c.samples, 2, simplify=FALSE);
########################
########################
#Build pre-requisite matrices
########################
# Create a list of descendants, starting from the first internal node (root)
descList <- prop.part(tree, check.labels = FALSE)
# Add the terminal edge descendants (tips). By definition, can only have one descendant
descList <- c(as.list(1:length(tree$tip.label)), descList)
# Convert `descList` to `edge_array` that matches the order of things in `tree$edge`
# For each entry in the tree$edge table, sum the descendants for each sample
# `tree$edge[i, 2]` is the node ID.
tmp.edge.array <- mclapply(1:nrow(tree$edge), function(i) {colSums(sp.o.t[descList[[tree$edge[i, 2]]], ,drop=F], na.rm=T)}, mc.cores=use.cores);
edge.array <- do.call("rbind", tmp.edge.array);
#Get edge occurrence matrix (for unweighted UniFrac)
edge.occ <- (edge.array > 0) - 0;
edge.occ.list <- apply((edge.array > 0), 2, which);
#Get tree in "postorder" order
z = reorder.phylo(tree, order="postorder");
#Get "tip ages", or horizontal position of edges in re-ordered phylo object
tip.ages = ape_node_depth_edge_length(Ntip = length(tree$tip.label), Nnode = tree$Nnode, edge = z$edge, Nedge = nrow(tree$edge)[1], edge.length = z$edge.length);
#Keep only tips
tip.ages <- tip.ages[1:length(tree$tip.label)]
#Rename (when in doubt)
names(tip.ages) <- z$tip.label;
#Reorder
tip.ages <- tip.ages[rownames(sp.o.t)];
########################
########################
#Calculate UniFrac distances based on pre-formed arrays
########################
#Unweighted UniFrac
size.chunk <- blocksize;
if (distance == "UniFrac_unweighted") {
cs.list <- foreach(i=split(1:length(spn), ceiling(seq_along(1:length(spn))/size.chunk))) %dopar% {
unlist(lapply(spn[i], function(sp) {
#Get occurrence vectors for current samples
a <- edge.occ.list[[sp[1]]]; b <- edge.occ.list[[sp[2]]];
curr.shared_edges <- intersect(a, b);
curr.union_edges <- union(a, b);
#Return: 1 - (shared branch length) / (total branch length)
#=> formulation as a distance
1 - sum(tree$edge.length[curr.shared_edges], na.rm=TRUE) / sum(tree$edge.length[curr.union_edges], na.rm=TRUE)
}));
}
}
########################
#Weighted UniFrac
if (distance == "UniFrac_weighted") {
cs.list <- foreach(i=split(1:length(spn), ceiling(seq_along(1:length(spn))/size.chunk))) %dopar% {
unlist(lapply(spn[i], function(sp) {
#Get current samples and total sample sizes
a <- sp[1]; b <- sp[2];
a.T <- c.sample.sizes[a]; b.T <- c.sample.sizes[b];
#Calculate branchweights
curr.bw <- abs(edge.array[, a]/a.T - edge.array[, b]/b.T);
#Return: (unshared branch length) / (total branch length)
#=> formulation as distance
sum(tree$edge.length * curr.bw, na.rm = TRUE) / sum(tip.ages * (sp.o.t[,a]/a.T + sp.o.t[,b]/b.T), na.rm = TRUE)
}));
}
}
########################
#Pass output
#Initialize UniFracMat with NAs
mat.UF <- matrix(NA_real_, n.sample, n.sample); diag(mat.UF) <- 0;
rownames(mat.UF) <- colnames(mat.UF) <- c.samples;
# Matrix-assign lower-triangle of UniFracMat. Then coerce to dist and return.
mat.idx <- do.call(rbind, spn)[, 2:1];
#Coerce results into matrices
mat.UF[mat.idx] <- unlist(cs.list); mat.UF[mat.idx[,2:1]] <- unlist(cs.list);
mat.UF
}
########################
########################
#Interaction-adjusted indices of community similarity
#=> formulated as distances/dissimilarities
#=> calculated in parallel
community.similarity.corr.par <- function(o.t, S, distance="jaccard.corr.uw", blocksize=1000, use.cores=detectCores()) {
########################
#Load packages for parallel processing
require("plyr");
require("foreach");
require("bigmemory");
library("doMC", quietly=T);
#Register cluster
registerDoMC(cores=use.cores);
########################
########################
#Get N x 2 matrix of pairwise combinations of samples
samples <- colnames(o.t);
#Turn OTU table into list format
ot.occ.list <- apply((o.t > 0), 2, which);
#ot.count.list <- mclapply(seq(1,length(ot.occ.list)), function(i) {o.t[ot.occ.list[[i]],i]}, mc.cores=use.cores);
ot.count.list <- alply(o.t, .margins=2, .fun=function(o.vec) {o.vec[o.vec > 0]}, .parallel=T)
names(ot.occ.list) <- names(ot.count.list) <- samples;
########################
########################
#Unweighted, corrected Jaccard, normalized by sample self-comparisons
#=> this is for unweighted TINA/PINA
if (distance == "jaccard.corr.uw.norm") {
#Pre-calculate sample-wise interaction term sums (normalized by number of OTUs per sample)
smpl.colsums <- mclapply(ot.occ.list, function(a.list) {colSums(S[a.list, ]) / length(a.list)}, mc.cores=use.cores);
names(smpl.colsums) <- samples;
#Pre-calculate sample self-comparisons
smpl.self <- unlist(lapply(samples, function(a) {a.list <- ot.occ.list[[a]]; sum(smpl.colsums[[a]][a.list]) / length(a.list)}));
names(smpl.self) <- samples;
#Calculate similarity index in parallel
cs.list <- mclapply(samples, function(a) {
a.sums <- smpl.colsums[[a]]; a.self <- smpl.self[a];
unlist(lapply(samples, function(b) {
b.list <- ot.occ.list[[b]]; b.self <- smpl.self[b];
1 - (sum(a.sums[b.list]) / (length(b.list) * sqrt(a.self*b.self)))
}));
}, mc.cores=use.cores);
}
########################
#Weighted, corrected Jaccard, normalized by sample self-comparisons
#=> this is for weighted TINA/PINA
if (distance == "jaccard.corr.w.norm") {
#Pre-calculate relative abundances per sample
ot.rel_count <- lapply(ot.count.list, function(a.count) {a.count / sum(a.count)});
#Pre-calculate sample self-comparisons
smpl.self <- unlist(mclapply(ot.rel_count, function(a.rel) {
a.list <- names(a.rel); a.S <- S[a.list, a.list];
sum(a.S * outer(a.rel, a.rel));
}, mc.cores=use.cores));
#Iterate through samples in parallel
cs.list <- mclapply(samples, function(a) {
#Get current OTU names, relative counts and sample size
a.rel <- ot.rel_count[[a]]; a.list <- names(a.rel);
#Get current interaction sub-matrix
a.S <- a.rel * S[a.list,];
#Iterate through all potential partner samples
unlist(lapply(samples, function(b) {
b.rel <- ot.rel_count[[b]]; b.list <- names(b.rel); curr.S <- a.S[,b.list];
#Calculate sample-pair weighted interaction term
1 - (sum(b.rel * t(curr.S)) / sqrt(smpl.self[a] * smpl.self[b]));
}));
}, mc.cores=use.cores);
}
########################
#Return
return.mat <- do.call("rbind", cs.list)
rownames(return.mat) <- colnames(return.mat) <- samples
return.mat
}
########################
################################################################################
################################################################################
fast.cophenetic.phylo <- function(x, nblocks=1000, use.cores=detectCores()) {
########################
cat(paste("Cophenetic distance preallocation and data preparation steps =>", Sys.time()), sep="\n");
#Get tree in "postorder" order
x = reorder.phylo(x, order="postorder");
tip.order <- order(x$tip.label);
#Get "tip ages", or horizontal position of edges in re-ordered phylo object
node.ages = ape_node_depth_edge_length(Ntip = Ntip(x), Nnode = x$Nnode, edge = x$edge, Nedge = nrow(x$edge)[1], edge.length = x$edge.length);
#Get all (unique) combinations of tip.labels
my.combs <- t(combnPrim(tip.order, 2));
#Split combinations into processable chunks
size.split <- floor(nrow(my.combs) / nblocks);
if (size.split < 1) {size.split <- 1}
my.split <- list(); length(my.split) <- nblocks;
my.split[1:(nblocks-1)] <- split(1:(size.split*(nblocks-1)), rep(1:(nblocks-1), each = size.split));
my.split[[nblocks]] <- ((size.split*(nblocks-1))+1):nrow(my.combs);
cat(paste("Done with preallocation and data preparation steps =>", Sys.time()), sep="\n");
########################
########################
cat(paste("Calculate node paths to root for all tips =>", Sys.time()), sep="\n");
#Get node paths to root for all tips
my.node_paths <- mclapply(seq(1, Ntip(x)), function (tip) {nodepath(x, from=tip, to=my.root)}, mc.cores=use.cores);
print(my.node_paths)
#Loop through all pairs of tips (in parallel) and calculate pairwise distance
#=> d.cophenetic = (d[i, root] + d[j, root]) - 2 * d[mrca.ij, root]
cat(paste("Calculate distances between all pairs of tips =>", Sys.time()), sep="\n");
split.sums <- mclapply(my.split, function(g) {node.ages[my.combs[g,1]]+node.ages[my.combs[g,2]]}, mc.cores=use.cores);
split.mrca <- mcmapply(function(a,b) {max(intersect(my.node_paths[[a]], my.node_paths[[b]]))}, my.combs[,1], my.combs[,2], mc.cores=use.cores);
dist.vec <- unlist(split.sums) - 2*node.ages[split.mrca];
cat(paste("Done =>", Sys.time()), sep="\n");
########################
########################
#Coerce into matrix
cat(paste("Coerce into matrix =>", Sys.time()), sep="\n");
mat.out <- matrix(nrow=Ntip(x), ncol=Ntip(x)); diag(mat.out) <- 0; rownames(mat.out) <- colnames(mat.out) <- x$tip.label[tip.order];
mat.out[upper.tri(mat.out)] <- dist.vec;
mat.out[lower.tri(mat.out)] <- t(mat.out)[lower.tri(mat.out)];
cat(paste("Done. Returning =>", Sys.time()), sep="\n");
########################
#Return
mat.out
}
ape_node_depth_edge_length <- function(Ntip, Nnode, edge, Nedge, edge.length){
.C(ape:::node_depth_edgelength, PACKAGE="ape", as.integer(Ntip),
as.integer(Nnode), as.integer(edge[, 1]),
as.integer(edge[, 2]), as.integer(Nedge),
as.double(edge.length), double(Ntip + Nnode))[[7]]
}