-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathsymbol_utils.py
182 lines (168 loc) · 8.98 KB
/
symbol_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import mxnet as mx
def Conv(**kwargs):
#name = kwargs.get('name')
#_weight = mx.symbol.Variable(name+'_weight')
#_bias = mx.symbol.Variable(name+'_bias', lr_mult=2.0, wd_mult=0.0)
#body = mx.sym.Convolution(weight = _weight, bias = _bias, **kwargs)
body = mx.sym.Convolution(**kwargs)
return body
def Act(data, act_type, name):
#ignore param act_type, set it in this function
body = mx.sym.LeakyReLU(data = data, act_type='prelu', name = name)
return body
bn_mom = 0.9
def Linear(data, num_filter=1, kernel=(1, 1), stride=(1, 1), pad=(0, 0), num_group=1, name=None, suffix=''):
conv = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=kernel, num_group=num_group, stride=stride, pad=pad, no_bias=True, name='%s%s_conv2d' %(name, suffix))
bn = mx.sym.BatchNorm(data=conv, name='%s%s_batchnorm' %(name, suffix), fix_gamma=False,momentum=bn_mom)
return bn
def get_fc1(last_conv, num_classes, fc_type):
bn_mom = 0.9
body = last_conv
if fc_type=='Z':
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1')
body = mx.symbol.Dropout(data=body, p=0.4)
fc1 = body
elif fc_type=='E':
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1')
body = mx.symbol.Dropout(data=body, p=0.4)
fc1 = mx.sym.FullyConnected(data=body, num_hidden=num_classes, name='pre_fc1')
fc1 = mx.sym.BatchNorm(data=fc1, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='fc1')
elif fc_type=='GAP':
bn1 = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1')
relu1 = Act(data=bn1, act_type='relu', name='relu1')
# Although kernel is not used here when global_pool=True, we should put one
pool1 = mx.sym.Pooling(data=relu1, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1')
flat = mx.sym.Flatten(data=pool1)
fc1 = mx.sym.FullyConnected(data=flat, num_hidden=num_classes, name='pre_fc1')
fc1 = mx.sym.BatchNorm(data=fc1, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='fc1')
elif fc_type=='GNAP': #mobilefacenet++
filters_in = 512 # param in mobilefacenet
if num_classes>filters_in:
body = mx.sym.Convolution(data=last_conv, num_filter=num_classes, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, name='convx')
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=0.9, name='convx_bn')
body = Act(data=body, act_type='relu', name='convx_relu')
filters_in = num_classes
else:
body = last_conv
body = mx.sym.BatchNorm(data=body, fix_gamma=True, eps=2e-5, momentum=0.9, name='bn6f')
spatial_norm=body*body
spatial_norm=mx.sym.sum(data=spatial_norm, axis=1, keepdims=True)
spatial_sqrt=mx.sym.sqrt(spatial_norm)
#spatial_mean=mx.sym.mean(spatial_sqrt, axis=(1,2,3), keepdims=True)
spatial_mean=mx.sym.mean(spatial_sqrt)
spatial_div_inverse=mx.sym.broadcast_div(spatial_mean, spatial_sqrt)
spatial_attention_inverse=mx.symbol.tile(spatial_div_inverse, reps=(1,filters_in,1,1))
body=body*spatial_attention_inverse
#body = mx.sym.broadcast_mul(body, spatial_div_inverse)
fc1 = mx.sym.Pooling(body, kernel=(7, 7), global_pool=True, pool_type='avg')
if num_classes<filters_in:
fc1 = mx.sym.BatchNorm(data=fc1, fix_gamma=True, eps=2e-5, momentum=0.9, name='bn6w')
fc1 = mx.sym.FullyConnected(data=fc1, num_hidden=num_classes, name='pre_fc1')
else:
fc1 = mx.sym.Flatten(data=fc1)
fc1 = mx.sym.BatchNorm(data=fc1, fix_gamma=True, eps=2e-5, momentum=0.9, name='fc1')
elif fc_type=="GDC": #mobilefacenet_v1
conv_6_dw = Linear(last_conv, num_filter=512, num_group=512, kernel=(7,7), pad=(0, 0), stride=(1, 1), name="conv_6dw7_7")
conv_6_f = mx.sym.FullyConnected(data=conv_6_dw, num_hidden=num_classes, name='pre_fc1')
fc1 = mx.sym.BatchNorm(data=conv_6_f, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='fc1')
elif fc_type=='F':
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1')
body = mx.symbol.Dropout(data=body, p=0.4)
fc1 = mx.sym.FullyConnected(data=body, num_hidden=num_classes, name='fc1')
elif fc_type=='G':
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1')
fc1 = mx.sym.FullyConnected(data=body, num_hidden=num_classes, name='fc1')
elif fc_type=='H':
fc1 = mx.sym.FullyConnected(data=body, num_hidden=num_classes, name='fc1')
elif fc_type=='I':
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1')
fc1 = mx.sym.FullyConnected(data=body, num_hidden=num_classes, name='pre_fc1')
fc1 = mx.sym.BatchNorm(data=fc1, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='fc1')
elif fc_type=='J':
fc1 = mx.sym.FullyConnected(data=body, num_hidden=num_classes, name='pre_fc1')
fc1 = mx.sym.BatchNorm(data=fc1, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='fc1')
else:
bn1 = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1')
relu1 = Act(data=bn1, act_type='relu', name='relu1')
# Although kernel is not used here when global_pool=True, we should put one
pool1 = mx.sym.Pooling(data=relu1, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1')
flat = mx.sym.Flatten(data=pool1)
if len(fc_type)>1:
if fc_type[1]=='X':
print('dropout mode')
flat = mx.symbol.Dropout(data=flat, p=0.2)
fc_type = fc_type[0]
if fc_type=='A':
fc1 = flat
else:
#B-D
#B
fc1 = mx.sym.FullyConnected(data=flat, num_hidden=num_classes, name='pre_fc1')
if fc_type=='C':
fc1 = mx.sym.BatchNorm(data=fc1, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='fc1')
elif fc_type=='D':
fc1 = mx.sym.BatchNorm(data=fc1, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='fc1')
fc1 = Act(data=fc1, act_type='relu', name='fc1_relu')
return fc1
def residual_unit_v3(data, num_filter, stride, dim_match, name, **kwargs):
"""Return ResNet Unit symbol for building ResNet
Parameters
----------
data : str
Input data
num_filter : int
Number of output channels
bnf : int
Bottle neck channels factor with regard to num_filter
stride : tuple
Stride used in convolution
dim_match : Boolean
True means channel number between input and output is the same, otherwise means differ
name : str
Base name of the operators
workspace : int
Workspace used in convolution operator
"""
bn_mom = kwargs.get('bn_mom', 0.9)
workspace = kwargs.get('workspace', 256)
memonger = kwargs.get('memonger', False)
#print('in unit3')
bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1')
conv1 = Conv(data=bn1, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1),
no_bias=True, workspace=workspace, name=name + '_conv1')
bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2')
act1 = Act(data=bn2, act_type='relu', name=name + '_relu1')
conv2 = Conv(data=act1, num_filter=num_filter, kernel=(3,3), stride=stride, pad=(1,1),
no_bias=True, workspace=workspace, name=name + '_conv2')
bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3')
if dim_match:
shortcut = data
else:
conv1sc = Conv(data=data, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
workspace=workspace, name=name+'_conv1sc')
shortcut = mx.sym.BatchNorm(data=conv1sc, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_sc')
if memonger:
shortcut._set_attr(mirror_stage='True')
return bn3 + shortcut
def get_head(data, version_input, num_filter):
bn_mom = 0.9
workspace = 256
kwargs = {'bn_mom': bn_mom, 'workspace' : workspace}
data = data-127.5
data = data*0.0078125
#data = mx.sym.BatchNorm(data=data, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='bn_data')
if version_input==0:
body = Conv(data=data, num_filter=num_filter, kernel=(7, 7), stride=(2,2), pad=(3, 3),
no_bias=True, name="conv0", workspace=workspace)
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn0')
body = Act(data=body, act_type='relu', name='relu0')
body = mx.sym.Pooling(data=body, kernel=(3, 3), stride=(2,2), pad=(1,1), pool_type='max')
else:
body = data
_num_filter = min(num_filter, 64)
body = Conv(data=body, num_filter=_num_filter, kernel=(3,3), stride=(1,1), pad=(1, 1),
no_bias=True, name="conv0", workspace=workspace)
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn0')
body = Act(data=body, act_type='relu', name='relu0')
body = residual_unit_v3(body, _num_filter, (2, 2), False, name='head', **kwargs)
return body