Skip to content
This repository has been archived by the owner on Nov 7, 2024. It is now read-only.

Latest commit

 

History

History
58 lines (39 loc) · 2.82 KB

README.md

File metadata and controls

58 lines (39 loc) · 2.82 KB

Bicycle Tracker using Extended Kalman Filter

Udacity - Self-Driving Car NanoDegree

In this project we will utilize a kalman filter to estimate the state of a moving object of interest with noisy lidar and radar measurements. Passing the project requires obtaining RMSE values that are lower than the tolerance outlined in the project rubric.

This project involves the Term 2 Simulator which can be downloaded here

This repository includes two files that can be used to set up and install uWebSocketIO for either Linux or Mac systems. For windows you can use either Docker, VMware, or even Windows 10 Bash on Ubuntu to install uWebSocketIO. Please see this concept in the classroom for the required version and installation scripts.

Once the install for uWebSocketIO is complete, the main program can be built and run by doing the following from the project top directory.

  1. mkdir build
  2. cd build
  3. cmake ..
  4. make
  5. ./ExtendedKF

Here is the main protcol that main.cpp uses for uWebSocketIO in communicating with the simulator.

INPUT: values provided by the simulator to the c++ program

["sensor_measurement"] => the measurement that the simulator observed (either lidar or radar)

OUTPUT: values provided by the c++ program to the simulator

["estimate_x"] <= kalman filter estimated position x ["estimate_y"] <= kalman filter estimated position y ["rmse_x"] ["rmse_y"] ["rmse_vx"] ["rmse_vy"]


Other Important Dependencies

Basic Build Instructions

  1. Clone this repo.
  2. Make a build directory: mkdir build && cd build
  3. Compile: cmake .. && make
    • On windows, you may need to run: cmake .. -G "Unix Makefiles" && make
  4. Run it: ./ExtendedKF