forked from marta-seq/PENGUIN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_pipeline_all_ch.py
86 lines (68 loc) · 2.71 KB
/
example_pipeline_all_ch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
""""
Example script for images with stacks of channel per image
Please adapt accordingly
"""
import os
import sys
from glob import glob
import numpy as np
from src.file_specs import FileSpecifics
import src.ImagePreprocessFilters as IPrep
import src.ImageParser as IP
def preprocess_image(img, thresholds, percentiles):
filtered_img = np.empty(img.shape)
for ch in range(img.shape[2]):
img_ch = img[:, :, ch]
# Thresholding
th = thresholds[ch]
if th is not None:
img_ch = np.where(img_ch >= th, img_ch, 0)
# Percentile filtering
perc = percentiles[ch]
if perc is not None:
img_ch = img_ch[..., np.newaxis]
img_ch = IPrep.percentile_filter(img_ch, window_size=3, percentile=perc, transf_bool=True)
img_ch = img_ch.squeeze()
filtered_img[:, :, ch] = img_ch
return filtered_img
if __name__ == "__main__":
folder_path = 'data_test/all_ch/METABRIC22_sample/'
# folder_path = 'data_test/all_ch/stacks_with_names/'
path_for_results = 'results_percentile/'
# normalization outliers
up_limit = 99
down_limit = 1
binary_masks = False
# Load files
files = glob(os.path.join(folder_path, '*.tiff'))
num_images = len(files)
print(f"Number of images identified: {num_images}")
if num_images == 0:
sys.exit(1)
# Parse image channels
specs = FileSpecifics(files[0], multitiff=True)
channel_names = specs.channel_names
print('Channel names: ', channel_names)
num_channels = len(channel_names)
# Calculate thresholds and percentiles
thresholds = [0.1 for _ in range(num_channels) ]
percentiles = [0.5 for _ in range(num_channels)]
images_original = list(map(IP.parse_image_pages, files))
# Preprocessing
imgs_out = map(lambda p: IPrep.remove_outliers(p, up_limit, down_limit), images_original)
imgs_norm = map(IPrep.normalize_channel_cv2_minmax, imgs_out)
filtered_images = map(lambda i: preprocess_image(i, thresholds, percentiles), imgs_norm)
imgs_filtered = list(filtered_images)
# Apply binary masks if needed
if binary_masks:
imgs_filtered = [np.where(a > 0, 1, 0) for a in imgs_filtered]
# Save images
names_save = [os.path.join(path_for_results, os.path.basename(sub)) for sub in files]
if isinstance(channel_names[0], str):
images_final = map(
lambda p, f: IPrep.save_img_ch_names_pages(p, f, ch_last=True, channel_names=channel_names),
imgs_filtered, names_save)
else:
# will not save channel names
images_final = map(lambda p, f: IPrep.save_images(p, f, ch_last=True), imgs_filtered, names_save)
print(f'Images saved at {path_for_results}')