-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathavw_img_read_4d.m
708 lines (580 loc) · 27.9 KB
/
avw_img_read_4d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
function [ avw, machine ] = avw_img_read_4d(fileprefix,volIndex,IMGorient,machine)
% avw_img_read - read Analyze format data image (*.img)
%
% [ avw, machine ] = avw_img_read(fileprefix, [volIndex], [orient], [machine])
%
% fileprefix - a string, the filename without the .img extension
%
% volIndex - the volume to read from a 4D file, where the first volume
% has index 1 (the default)
%
% orient - read a specified orientation, integer values:
%
% '', use header history orient field
% 0, transverse unflipped (LAS*)
% 1, coronal unflipped (LA*S)
% 2, sagittal unflipped (L*AS)
% 3, transverse flipped (LPS*)
% 4, coronal flipped (LA*I)
% 5, sagittal flipped (L*AI)
%
% where * follows the slice dimension and letters indicate +XYZ
% orientations (L left, R right, A anterior, P posterior,
% I inferior, & S superior).
%
% Some files may contain data in the 3-5 orientations, but this
% is unlikely. For more information about orientation, see the
% documentation at the end of this .m file. See also the
% AVW_FLIP function for orthogonal reorientation.
%
% machine - a string, see machineformat in fread for details.
% The default here is 'ieee-le' but the routine
% will automatically switch between little and big
% endian to read any such Analyze header. It
% reports the appropriate machine format and can
% return the machine value.
%
% Returned values:
%
% avw.hdr - a struct with image data parameters.
% avw.img - a 3D matrix of image data (double precision)
% from a volume of a 4D Analyze file
%
% The returned 3D matrix will correspond with the
% default ANALYZE coordinate system, which
% is Left-handed:
%
% X-Y plane is Transverse
% X-Z plane is Coronal
% Y-Z plane is Sagittal
%
% X axis runs from patient right (low X) to patient Left (high X)
% Y axis runs from posterior (low Y) to Anterior (high Y)
% Z axis runs from inferior (low Z) to Superior (high Z)
%
% See also: avw_hdr_read (called by this function),
% avw_view, avw_write, avw_img_write, avw_flip
%
% $Revision: 1.1 $ $Date: 2004/11/12 01:30:25 $
% Licence: GNU GPL, no express or implied warranties
% History: 05/2002, [email protected]
% The Analyze format is copyright
% (c) Copyright, 1986-1995
% Biomedical Imaging Resource, Mayo Foundation
% 01/2003, [email protected]
% - adapted for matlab v5
% - revised all orientation information and handling
% after seeking further advice from AnalyzeDirect.com
% 03/2003, [email protected]
% - adapted for -ve pixdim values (non standard Analyze)
% 11/2003, Darren.Weber_at_radiology.ucsf.edu
% - adapted for 4D Analyze files
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
error('in development');
if ~exist('fileprefix','var'),
msg = sprintf('...no input fileprefix - see help avw_img_read\n\n');
error(msg);
end
if ~exist('volIndex','var'), volIndex = 1; end
if ~exist('IMGorient','var'), IMGorient = ''; end
if ~exist('machine','var'), machine = 'ieee-le'; end
if findstr('.hdr',fileprefix),
fileprefix = strrep(fileprefix,'.hdr','');
end
if findstr('.img',fileprefix),
fileprefix = strrep(fileprefix,'.img','');
end
% MAIN
% Read the file header
[ avw, machine ] = avw_hdr_read(fileprefix,machine);
avw = read_image(avw,volIndex,IMGorient,machine);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ avw ] = read_image(avw,volIndex,IMGorient,machine)
fid = fopen(sprintf('%s.img',avw.fileprefix),'r',machine);
if fid < 0,
msg = sprintf('...cannot open file %s.img\n\n',avw.fileprefix);
error(msg);
end
version = '[$Revision: 1.1 $]';
fprintf('\nAVW_IMG_READ [v%s]\n',version(12:16)); tic;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check data precision
% short int bitpix; /* Number of bits per pixel; 1, 8, 16, 32, or 64. */
% short int datatype /* Datatype for this image set */
% /*Acceptable values for datatype are*/
% #define DT_NONE 0
% #define DT_UNKNOWN 0 /*Unknown data type*/
% #define DT_BINARY 1 /*Binary ( 1 bit per voxel)*/
% #define DT_UNSIGNED_CHAR 2 /*Unsigned character ( 8 bits per voxel)*/
% #define DT_SIGNED_SHORT 4 /*Signed short (16 bits per voxel)*/
% #define DT_SIGNED_INT 8 /*Signed integer (32 bits per voxel)*/
% #define DT_FLOAT 16 /*Floating point (32 bits per voxel)*/
% #define DT_COMPLEX 32 /*Complex (64 bits per voxel; 2 floating point numbers)/*
% #define DT_DOUBLE 64 /*Double precision (64 bits per voxel)*/
% #define DT_RGB 128 /*A Red-Green-Blue datatype*/
% #define DT_ALL 255 /*Undocumented*/
switch double(avw.hdr.dime.bitpix),
case 1, precision = 'bit1';
case 8, precision = 'uchar';
case 16, precision = 'int16';
case 32,
if isequal(avw.hdr.dime.datatype, 8), precision = 'int32';
else precision = 'single';
end
case 64, precision = 'double';
otherwise,
precision = 'uchar';
fprintf('...precision undefined in header, using ''uchar''\n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calculate the byte index range for a volume to be read
% In general, voxel(a,b,c) will be stored as byte N where
% N = a + Nx(b + Ny*c), given the first voxel of the image
% is (0,0,0). Matlab fseek command indexes the first voxel
% as (0,0,0), so this formula should work.
Nx = double(avw.hdr.dime.dim(2));
Ny = double(avw.hdr.dime.dim(3));
Nz = double(avw.hdr.dime.dim(4));
Nt = double(avw.hdr.dime.dim(5));
readPixels = Nx * Ny * Nz;
bitpix = double(avw.hdr.dime.bitpix);
if Nt == 1,
fprintf('...reading volume %d of %d\n',1,Nt);
avw.offset = 0;
else
if volIndex <= Nt,
fprintf('...reading volume %d of %d\n',volIndex,Nt);
avw.offset = (readPixels * volIndex) - readPixels;
% this the offset in pixels, but we need bytes for fseek!
avw.offset = (avw.offset * bitpix) / 8;
else
msg = sprintf('volIndex > 4D volume (%d vols)',Nt);
error(msg);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% read a volume from the .img file into matlab
fprintf('...reading %s Analyze %s image format.\n',machine,precision);
fseek(fid,avw.offset,'bof');
% adjust for matlab version
ver = version;
ver = str2num(ver(1));
if ver < 6,
tmp = fread(fid,readPixels,sprintf('%s',precision));
else,
ftell(fid)
[tmp, count] = fread(fid,readPixels,sprintf('%s=>double',precision));
ftell(fid)
avw.offset = (readPixels * [volIndex + 1]) - readPixels;
avw.offset = (avw.offset * bitpix) / 8
if count ~= readPixels,
msg = sprintf('only read %d of %d total pixels',count,readPixels);
error(msg);
end
end
fclose(fid);
% Update the global min and max values
avw.hdr.dime.glmax = max(double(tmp));
avw.hdr.dime.glmin = min(double(tmp));
%---------------------------------------------------------------
% Now partition the img data into xyz
% --- first figure out the size of the image
% short int dim[ ]; /* Array of the image dimensions */
%
% dim[0] Number of dimensions in database; usually 4.
% dim[1] Image X dimension; number of pixels in an image row.
% dim[2] Image Y dimension; number of pixel rows in slice.
% dim[3] Volume Z dimension; number of slices in a volume.
% dim[4] Time points; number of volumes in database.
PixelDim = double(avw.hdr.dime.dim(2));
RowDim = double(avw.hdr.dime.dim(3));
SliceDim = double(avw.hdr.dime.dim(4));
PixelSz = double(avw.hdr.dime.pixdim(2));
RowSz = double(avw.hdr.dime.pixdim(3));
SliceSz = double(avw.hdr.dime.pixdim(4));
% ---- NON STANDARD ANALYZE...
% Some Analyze files have been found to set -ve pixdim values, eg
% the MNI template avg152T1_brain in the FSL etc/standard folder,
% perhaps to indicate flipped orientation? If so, this code below
% will NOT handle the flip correctly!
if PixelSz < 0,
warning('X pixdim < 0 !!! resetting to abs(avw.hdr.dime.pixdim(2))');
PixelSz = abs(PixelSz);
avw.hdr.dime.pixdim(2) = single(PixelSz);
end
if RowSz < 0,
warning('Y pixdim < 0 !!! resetting to abs(avw.hdr.dime.pixdim(3))');
RowSz = abs(RowSz);
avw.hdr.dime.pixdim(3) = single(RowSz);
end
if SliceSz < 0,
warning('Z pixdim < 0 !!! resetting to abs(avw.hdr.dime.pixdim(4))');
SliceSz = abs(SliceSz);
avw.hdr.dime.pixdim(4) = single(SliceSz);
end
% ---- END OF NON STANDARD ANALYZE
% --- check the orientation specification and arrange img accordingly
if ~isempty(IMGorient),
if ischar(IMGorient),
avw.hdr.hist.orient = uint8(str2num(IMGorient));
else
avw.hdr.hist.orient = uint8(IMGorient);
end
end,
if isempty(avw.hdr.hist.orient),
msg = [ '...unspecified avw.hdr.hist.orient, using default 0\n',...
' (check image and try explicit IMGorient option).\n'];
fprintf(msg);
avw.hdr.hist.orient = uint8(0);
end
switch double(avw.hdr.hist.orient),
case 0, % transverse unflipped
% orient = 0: The primary orientation of the data on disk is in the
% transverse plane relative to the object scanned. Most commonly, the fastest
% moving index through the voxels that are part of this transverse image would
% span the right->left extent of the structure imaged, with the next fastest
% moving index spanning the posterior->anterior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the X-Y plane of the 3D Analyze Coordinate System, with the Z dimension
% being the slice direction.
% For the 'transverse unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'y' axis - from patient posterior to anterior
% Slices in 'z' axis - from patient inferior to superior
fprintf('...reading axial unflipped orientation\n');
avw.img = zeros(PixelDim,RowDim,SliceDim);
n = 1;
x = 1:PixelDim;
for z = 1:SliceDim,
for y = 1:RowDim,
% load Y row of X values into Z slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% no need to rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
case 1, % coronal unflipped
% orient = 1: The primary orientation of the data on disk is in the coronal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this coronal image would span the
% right->left extent of the structure imaged, with the next fastest moving
% index spanning the inferior->superior extent of the structure. This 'orient'
% flag would indicate to Analyze that this data should be placed in the X-Z
% plane of the 3D Analyze Coordinate System, with the Y dimension being the
% slice direction.
% For the 'coronal unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'y' axis - from patient posterior to anterior
fprintf('...reading coronal unflipped orientation\n');
avw.img = zeros(PixelDim,SliceDim,RowDim);
n = 1;
x = 1:PixelDim;
for y = 1:SliceDim,
for z = 1:RowDim,
% load Z row of X values into Y slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([PixelDim,SliceDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([PixelSz,SliceSz,RowSz]);
case 2, % sagittal unflipped
% orient = 2: The primary orientation of the data on disk is in the sagittal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this sagittal image would span the
% posterior->anterior extent of the structure imaged, with the next fastest
% moving index spanning the inferior->superior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the Y-Z plane of the 3D Analyze Coordinate System, with the X dimension
% being the slice direction.
% For the 'sagittal unflipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to anterior
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'x' axis - from patient right to left
fprintf('...reading sagittal unflipped orientation\n');
avw.img = zeros(SliceDim,PixelDim,RowDim);
n = 1;
y = 1:PixelDim; % posterior to anterior (fastest)
for x = 1:SliceDim, % right to left (slowest)
for z = 1:RowDim, % inferior to superior
% load Z row of Y values into X slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([SliceDim,PixelDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([SliceSz,PixelSz,RowSz]);
%--------------------------------------------------------------------------------
% Orient values 3-5 have the second index reversed in order, essentially
% 'flipping' the images relative to what would most likely become the vertical
% axis of the displayed image.
%--------------------------------------------------------------------------------
case 3, % transverse/axial flipped
% orient = 3: The primary orientation of the data on disk is in the
% transverse plane relative to the object scanned. Most commonly, the fastest
% moving index through the voxels that are part of this transverse image would
% span the right->left extent of the structure imaged, with the next fastest
% moving index spanning the *anterior->posterior* extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the X-Y plane of the 3D Analyze Coordinate System, with the Z dimension
% being the slice direction.
% For the 'transverse flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to Left
% Rows in 'y' axis - from patient anterior to Posterior *
% Slices in 'z' axis - from patient inferior to Superior
fprintf('...reading axial flipped (+Y from Anterior to Posterior)\n');
avw.img = zeros(PixelDim,RowDim,SliceDim);
n = 1;
x = 1:PixelDim;
for z = 1:SliceDim,
for y = RowDim:-1:1, % flip in Y, read A2P file into P2A 3D matrix
% load a flipped Y row of X values into Z slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% no need to rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
case 4, % coronal flipped
% orient = 4: The primary orientation of the data on disk is in the coronal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this coronal image would span the
% right->left extent of the structure imaged, with the next fastest moving
% index spanning the *superior->inferior* extent of the structure. This 'orient'
% flag would indicate to Analyze that this data should be placed in the X-Z
% plane of the 3D Analyze Coordinate System, with the Y dimension being the
% slice direction.
% For the 'coronal flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to Left
% Rows in 'z' axis - from patient superior to Inferior*
% Slices in 'y' axis - from patient posterior to Anterior
fprintf('...reading coronal flipped (+Z from Superior to Inferior)\n');
avw.img = zeros(PixelDim,SliceDim,RowDim);
n = 1;
x = 1:PixelDim;
for y = 1:SliceDim,
for z = RowDim:-1:1, % flip in Z, read S2I file into I2S 3D matrix
% load a flipped Z row of X values into Y slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([PixelDim,SliceDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([PixelSz,SliceSz,RowSz]);
case 5, % sagittal flipped
% orient = 5: The primary orientation of the data on disk is in the sagittal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this sagittal image would span the
% posterior->anterior extent of the structure imaged, with the next fastest
% moving index spanning the *superior->inferior* extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the Y-Z plane of the 3D Analyze Coordinate System, with the X dimension
% being the slice direction.
% For the 'sagittal flipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to Anterior
% Rows in 'z' axis - from patient superior to Inferior*
% Slices in 'x' axis - from patient right to Left
fprintf('...reading sagittal flipped (+Z from Superior to Inferior)\n');
avw.img = zeros(SliceDim,PixelDim,RowDim);
n = 1;
y = 1:PixelDim;
for x = 1:SliceDim,
for z = RowDim:-1:1, % flip in Z, read S2I file into I2S 3D matrix
% load a flipped Z row of Y values into X slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([SliceDim,PixelDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([SliceSz,PixelSz,RowSz]);
otherwise
error('unknown value in avw.hdr.hist.orient, try explicit IMGorient option.');
end
t=toc; fprintf('...done (%5.2f sec).\n\n',t);
return
% This function attempts to read the orientation of the
% Analyze file according to the hdr.hist.orient field of the
% header. Unfortunately, this field is optional and not
% all programs will set it correctly, so there is no guarantee,
% that the data loaded will be correctly oriented. If necessary,
% experiment with the 'orient' option to read the .img
% data into the 3D matrix of avw.img as preferred.
%
% (Conventions gathered from e-mail with [email protected])
%
% 0 transverse unflipped
% X direction first, progressing from patient right to left,
% Y direction second, progressing from patient posterior to anterior,
% Z direction third, progressing from patient inferior to superior.
% 1 coronal unflipped
% X direction first, progressing from patient right to left,
% Z direction second, progressing from patient inferior to superior,
% Y direction third, progressing from patient posterior to anterior.
% 2 sagittal unflipped
% Y direction first, progressing from patient posterior to anterior,
% Z direction second, progressing from patient inferior to superior,
% X direction third, progressing from patient right to left.
% 3 transverse flipped
% X direction first, progressing from patient right to left,
% Y direction second, progressing from patient anterior to posterior,
% Z direction third, progressing from patient inferior to superior.
% 4 coronal flipped
% X direction first, progressing from patient right to left,
% Z direction second, progressing from patient superior to inferior,
% Y direction third, progressing from patient posterior to anterior.
% 5 sagittal flipped
% Y direction first, progressing from patient posterior to anterior,
% Z direction second, progressing from patient superior to inferior,
% X direction third, progressing from patient right to left.
%----------------------------------------------------------------------------
% From ANALYZE documentation...
%
% The ANALYZE coordinate system has an origin in the lower left
% corner. That is, with the subject lying supine, the coordinate
% origin is on the right side of the body (x), at the back (y),
% and at the feet (z). This means that:
%
% +X increases from right (R) to left (L)
% +Y increases from the back (posterior,P) to the front (anterior, A)
% +Z increases from the feet (inferior,I) to the head (superior, S)
%
% The LAS orientation is the radiological convention, where patient
% left is on the image right. The alternative neurological
% convention is RAS (also Talairach convention).
%
% A major advantage of the Analzye origin convention is that the
% coordinate origin of each orthogonal orientation (transverse,
% coronal, and sagittal) lies in the lower left corner of the
% slice as it is displayed.
%
% Orthogonal slices are numbered from one to the number of slices
% in that orientation. For example, a volume (x, y, z) dimensioned
% 128, 256, 48 has:
%
% 128 sagittal slices numbered 1 through 128 (X)
% 256 coronal slices numbered 1 through 256 (Y)
% 48 transverse slices numbered 1 through 48 (Z)
%
% Pixel coordinates are made with reference to the slice numbers from
% which the pixels come. Thus, the first pixel in the volume is
% referenced p(1,1,1) and not at p(0,0,0).
%
% Transverse slices are in the XY plane (also known as axial slices).
% Sagittal slices are in the ZY plane.
% Coronal slices are in the ZX plane.
%
%----------------------------------------------------------------------------
%----------------------------------------------------------------------------
% E-mail from [email protected]
%
% The 'orient' field in the data_history structure specifies the primary
% orientation of the data as it is stored in the file on disk. This usually
% corresponds to the orientation in the plane of acquisition, given that this
% would correspond to the order in which the data is written to disk by the
% scanner or other software application. As you know, this field will contain
% the values:
%
% orient = 0 transverse unflipped
% 1 coronal unflipped
% 2 sagittal unflipped
% 3 transverse flipped
% 4 coronal flipped
% 5 sagittal flipped
%
% It would be vary rare that you would ever encounter any old Analyze 7.5
% files that contain values of 'orient' which indicate that the data has been
% 'flipped'. The 'flipped flag' values were really only used internal to
% Analyze to precondition data for fast display in the Movie module, where the
% images were actually flipped vertically in order to accommodate the raster
% paint order on older graphics devices. The only cases you will encounter
% will have values of 0, 1, or 2.
%
% As mentioned, the 'orient' flag only specifies the primary orientation of
% data as stored in the disk file itself. It has nothing to do with the
% representation of the data in the 3D Analyze coordinate system, which always
% has a fixed representation to the data. The meaning of the 'orient' values
% should be interpreted as follows:
%
% orient = 0: The primary orientation of the data on disk is in the
% transverse plane relative to the object scanned. Most commonly, the fastest
% moving index through the voxels that are part of this transverse image would
% span the right-left extent of the structure imaged, with the next fastest
% moving index spanning the posterior-anterior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the X-Y plane of the 3D Analyze Coordinate System, with the Z dimension
% being the slice direction.
%
% orient = 1: The primary orientation of the data on disk is in the coronal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this coronal image would span the
% right-left extent of the structure imaged, with the next fastest moving
% index spanning the inferior-superior extent of the structure. This 'orient'
% flag would indicate to Analyze that this data should be placed in the X-Z
% plane of the 3D Analyze Coordinate System, with the Y dimension being the
% slice direction.
%
% orient = 2: The primary orientation of the data on disk is in the sagittal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this sagittal image would span the
% posterior-anterior extent of the structure imaged, with the next fastest
% moving index spanning the inferior-superior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the Y-Z plane of the 3D Analyze Coordinate System, with the X dimension
% being the slice direction.
%
% Orient values 3-5 have the second index reversed in order, essentially
% 'flipping' the images relative to what would most likely become the vertical
% axis of the displayed image.
%
% Hopefully you understand the difference between the indication this 'orient'
% flag has relative to data stored on disk and the full 3D Analyze Coordinate
% System for data that is managed as a volume image. As mentioned previously,
% the orientation of patient anatomy in the 3D Analyze Coordinate System has a
% fixed orientation relative to each of the orthogonal axes. This orientation
% is completely described in the information that is attached, but the basics
% are:
%
% Left-handed coordinate system
%
% X-Y plane is Transverse
% X-Z plane is Coronal
% Y-Z plane is Sagittal
%
% X axis runs from patient right (low X) to patient left (high X)
% Y axis runs from posterior (low Y) to anterior (high Y)
% Z axis runs from inferior (low Z) to superior (high Z)
%
%----------------------------------------------------------------------------
%----------------------------------------------------------------------------
% SPM2 NOTES from spm2 webpage: One thing to watch out for is the image
% orientation. The proper Analyze format uses a left-handed co-ordinate
% system, whereas Talairach uses a right-handed one. In SPM99, images were
% flipped at the spatial normalisation stage (from one co-ordinate system
% to the other). In SPM2b, a different approach is used, so that either a
% left- or right-handed co-ordinate system is used throughout. The SPM2b
% program is told about the handedness that the images are stored with by
% the spm_flip_analyze_images.m function and the defaults.analyze.flip
% parameter that is specified in the spm_defaults.m file. These files are
% intended to be customised for each site. If you previously used SPM99
% and your images were flipped during spatial normalisation, then set
% defaults.analyze.flip=1. If no flipping took place, then set
% defaults.analyze.flip=0. Check that when using the Display facility
% (possibly after specifying some rigid-body rotations) that:
%
% The top-left image is coronal with the top (superior) of the head displayed
% at the top and the left shown on the left. This is as if the subject is viewed
% from behind.
%
% The bottom-left image is axial with the front (anterior) of the head at the
% top and the left shown on the left. This is as if the subject is viewed from above.
%
% The top-right image is sagittal with the front (anterior) of the head at the
% left and the top of the head shown at the top. This is as if the subject is
% viewed from the left.
%----------------------------------------------------------------------------