-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpdtree_clustering.py
95 lines (72 loc) · 2.56 KB
/
pdtree_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import sys
class PDTree(object):
class node(object):
pass
class leafnode(node):
def __init__(self, idx):
self.idx = idx
self.children = len(idx)
class innernode(node):
def __init__(self, split_vec, center, split, left, right):
self.split_vec = split_vec
self.center = center
self.split = split
self.left = left
self.right = right
self.children = left.children+right.children
def __init__(self, X, minsize):
self.X = X
idx = np.arange(len(X))
self.tree = self.__build(idx, minsize)
def __build(self, idx, minsize):
n = len(idx)
if n < minsize:
return PDTree.leafnode(idx)
data = self.X[idx]
dmean = np.mean(data, axis=0)
data -= dmean
XXt = np.dot(data.T, data)
ev, evec = np.linalg.eig(XXt)
pidx = np.argmax(ev)
pvec = evec[:, pidx]
a = np.dot(data, pvec)
split = np.median(a)
idx1 = idx[a < split]
idx2 = idx[a >= split]
return PDTree.innernode(pvec, dmean, split,
self.__build(idx1,minsize),
self.__build(idx2,minsize))
def leaf_idx(self):
def child_idxs(node):
if isinstance(node, PDTree.leafnode):
return [node.idx]
else:
leftidx = child_idxs(node.left)
rightidx = child_idxs(node.right)
return leftidx+rightidx
return child_idxs(self.tree)
def recluster(self, X):
def recluster_recursive(node, idx):
if isinstance(node, PDTree.leafnode):
return [idx]
data = X[idx]
a = np.dot(data - node.center, node.split_vec)
idx1 = idx[a < node.split]
idx2 = idx[a >= node.split]
return recluster_recursive(node.left, idx1) + recluster_recursive(node.right, idx2)
idx = np.arange(len(X))
return recluster_recursive(self.tree, idx)
def pdtree_cluster(X, blocksize=300):
X = X[:, :2].copy()
lons = X[:, 0]
X[:, 0] = (lons + 22) % 360 - 22
t = PDTree(X, minsize=blocksize)
idxs = t.leaf_idx()
def reblock(XX):
lons = XX[:, 0].copy()
XX[:, 0] = (lons + 22) % 360 - 22
cluster_idxs = t.recluster(XX[:, :2])
XX[:, 0] = lons
return cluster_idxs
return idxs, reblock