-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathextractor.py
executable file
·78 lines (61 loc) · 2.36 KB
/
extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import datetime
import math
import os
import gc
import time
import numpy as np
import torch
from torch.autograd import Variable
import utils
import tqdm
class Extractor(object):
def __init__(self, cuda, model, val_loader, log_file, feature_dir, flatten_feature=True, print_freq=1):
"""
:param cuda:
:param model:
:param val_loader:
:param log_file: log file name. logs are appended to this file.
:param feature_dir:
:param flatten_feature:
:param print_freq:
"""
self.cuda = cuda
self.model = model
self.val_loader = val_loader
self.log_file = log_file
self.feature_dir = feature_dir
self.flatten_feature = flatten_feature
self.print_freq = print_freq
self.timestamp_start = datetime.datetime.now()
def print_log(self, log_str):
with open(self.log_file, 'a') as f:
f.write(log_str + '\n')
def extract(self):
batch_time = utils.AverageMeter()
self.model.eval()
end = time.time()
for batch_idx, (imgs, target, img_files, class_ids) in tqdm.tqdm(
enumerate(self.val_loader), total=len(self.val_loader),
desc='Extract', ncols=80, leave=False):
gc.collect()
if self.cuda:
imgs = imgs.cuda()
imgs = Variable(imgs, volatile=True)
output = self.model(imgs) # N C H W torch.Size([1, 1, 401, 600])
if self.flatten_feature:
output = output.view(output.size(0), -1)
output = output.data.cpu().numpy()
assert output.shape[0] == len(img_files)
for i, img_file in enumerate(img_files):
base_name = os.path.splitext(img_file)[0]
feature_file = os.path.join(self.feature_dir, base_name + ".npy")
utils.create_dir(os.path.dirname(feature_file))
np.save(feature_file, output[i])
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % self.print_freq == 0:
log_str = 'Extract: [{0}/{1}]\tTime: {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(
batch_idx, len(self.val_loader), batch_time=batch_time)
print(log_str)
self.print_log(log_str)