-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUtil.tla
45 lines (37 loc) · 1.68 KB
/
Util.tla
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
-------------------------------- MODULE Util --------------------------------
EXTENDS Sequences, FiniteSets, Naturals, TLC
\* Utilies from Practical TLA+
ReduceSet(op(_, _), set, acc) ==
LET f[s \in SUBSET set] == \* here's where the magic is
IF s = {} THEN acc
ELSE LET x == CHOOSE x \in s: TRUE
IN op(x, f[s \ {x}])
IN f[set]
ReduceSeq(op(_, _), seq, acc) ==
ReduceSet(LAMBDA i, a: op(seq[i], a), DOMAIN seq, acc)
\* Pulls an indice of the sequence for elem.
Index(seq, elem) == CHOOSE i \in 1..Len(seq): seq[i] = elem
\* end from Practical TLA+
Range(T) == { T[x] : x \in DOMAIN T }
SeqToSet(s) == {s[i] : i \in DOMAIN s}
Last(seq) == seq[Len(seq)]
IsEmpty(seq) == Len(seq) = 0
\* Remove all occurences of `elem` from `seq`
Remove(seq, elem) == SelectSeq(seq, LAMBDA e: e /= elem)
\* Dual to UNION on intersect
INTERSECTION(setOfSets) == ReduceSet(\intersect, setOfSets, UNION setOfSets)
\* Borrowed from Stephan Merz. TLA+ Case Study: A Resource Allocator. [Intern report] A04-R-101 || merz04a, 2004, 20 p. ffinria-00107809f
(* The set of permutations of a finite set, represented as sequences. *)
PermSeqs(S) ==
LET perms[ss \in SUBSET S] ==
IF ss = {} THEN { << >> }
ELSE LET ps == [ x \in ss |->
{ Append(sq,x) : sq \in perms[ss \ {x}] } ]
IN UNION { ps[x] : x \in ss }
IN perms[S]
\* Helper to write "unit test" ASSUMES which print when false
test(lhs, rhs) == lhs /= rhs => Print(<<lhs, " IS NOT ", rhs>>, FALSE)
=============================================================================
\* Modification History
\* Last modified Tue Jun 16 12:04:20 CEST 2020 by tim
\* Created Tue Apr 28 16:43:24 CEST 2020 by tim