-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcreate-ol-net.lua
205 lines (152 loc) · 7 KB
/
create-ol-net.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
----------------------------------------------------------------------
-- create a Online Learner neural net based on clustering learning filters
-- E. Culurciello, August 22nd 2012
----------------------------------------------------------------------
require 'nnx'
require 'image'
require 'eex'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Generates a new online-learner network')
cmd:text()
cmd:text('Options')
cmd:option('-nettype', 'random2l', 'Net type: "SAD", "randomf" (forest)... more')
-- comment: 1 = new architecture with SpatialSAD. Does not produce good nets for OL yet.
cmd:text()
opt = cmd:parse(arg or {}) -- pass parameters to rest of file:
torch.setdefaulttensortype('torch.FloatTensor')
net_orig = torch.load('encoder_orig.net') -- this is the original OL network renamed - a copy has to be in this folder!
normkernel = image.gaussian1D(7)
if not(layer1) then layer1 = torch.load('ol-layer1.net') end
if not(layer2) then layer2 = torch.load('ol-layer2.net') end
if not(layer3) then layer3 = torch.load('ol-layer3.net') end
if opt.nettype == 'SAD' then
-- 3 layers SAD net
net_new = nn.Sequential()
for i=1,layer1:size() do net_new:add(layer1.modules[i]) end
for i=1,layer2:size() do net_new:add(layer2.modules[i]) end
for i=1,layer3:size() do net_new:add(layer3.modules[i]) end
-- init layer for OL inferring sizes later
net_new.modules[1].gradInput = torch.zeros(3,46,46)
elseif opt.nettype == 'SAD2l' then
-- 2 layers SAD net only
net_new = nn.Sequential()
for i=1,layer1:size() do net_new:add(layer1.modules[i]) end
for i=1,layer2:size() do net_new:add(layer2.modules[i]) end
-- init layer for OL inferring sizes later
net_new.modules[1].gradInput = torch.zeros(3,46,46)
-- random [1st], 2nd layer network - currently gives the best results for OL nets
elseif opt.nettype == 'random2l' then
rnd1 = 0 -- random 1st layer?
if not(rnd1) then kernels1 = torch.load('ol-1l-32-weights.net') end
poolsize = 2
if not(rnd1) then nk1 = kernels1:size(1) else nk1=32 end
nk2 = 32
fanin1 = 1
fanin2 = 4
is1 = 7
is2 = 7
net_new = nn.Sequential()
net_new:add(nn.SpatialConvolutionMap(nn.tables.random(3, nk1, fanin1), is1, is1))
net_new:add(nn.Tanh())
--net_new:add(nn.SpatialMaxPooling(poolsize, poolsize, poolsize, poolsize)) -- this also works fine
--net_new:add(nn.SpatialSubSampling(nk1, poolsize, poolsize, poolsize, poolsize)) -- this also works well
net_new:add(nn.SpatialLPPooling(nk1, 2, poolsize, poolsize, poolsize, poolsize))
--net_new:add(nn.SpatialSubtractiveNormalization(nk1, normkernel)) -- without this also works fine
-- 2nd layer:
net_new:add(nn.SpatialConvolutionMap(nn.tables.random(nk1, nk2, fanin2), is2, is2))
net_new:add(nn.Tanh())
--net_new:add(nn.SpatialMaxPooling(poolsize, poolsize, poolsize, poolsize))
--net_new:add(nn.SpatialSubSampling(nk2, poolsize, poolsize, poolsize, poolsize))
net_new:add(nn.SpatialLPPooling(nk2, 2, poolsize, poolsize, poolsize, poolsize))
--net_new:add(nn.SpatialSubtractiveNormalization(nk2, normkernel))
-- init layer for OL inferring sizes later
net_new.modules[1].gradInput = torch.zeros(3,46,46)
if not(rnd1) then net_new.modules[1].weight = kernels1 end
if not(rnd1) then net_new.modules[1].bias = net_new.modules[1].bias*0 end
-- volumetic convolution: process multiple frames
elseif opt.nettype == 'vol2l' then
rnd1 = 1 -- random 1st layer?
if not(rnd1) then kernels1 = torch.load('ol-1l-32-weights.net') end
poolsize = 2
if not(rnd1) then nk1 = kernels1:size(1) else nk1=32 end
nk2 = 32
fanin1 = 1
fanin2 = 4
is1 = 7
is2 = 7
net_new = nn.Sequential()
--(VolumetricConvolution(nInputPlane, nOutputPlane, kT, kW, kH, dT, dW, dH)
net_new:add(nn.VolumetricConvolution(3, nk1, 2, is1, is1))
net_new:add(nn.Sum(2))
net_new:add(nn.Tanh())
net_new:add(nn.SpatialLPPooling(nk1, 2, poolsize, poolsize, poolsize, poolsize))
--net_new:add(nn.SpatialSubtractiveNormalization(nk1, normkernel)) -- without this also works fine
-- 2nd layer:
net_new:add(nn.SpatialConvolutionMap(nn.tables.random(nk1, nk2, fanin2), is2, is2))
net_new:add(nn.Tanh())
net_new:add(nn.SpatialLPPooling(nk2, 2, poolsize, poolsize, poolsize, poolsize))
--net_new:add(nn.SpatialSubtractiveNormalization(nk2, normkernel))
-- init layer for OL inferring sizes later
net_new.modules[1].gradInput = torch.zeros(3,46,46)
if not(rnd1) then net_new.modules[1].weight = kernels1 end
if not(rnd1) then net_new.modules[1].bias = net_new.modules[1].bias*0 end
-- Volumetric Convolutions tests:
inp = torch.Tensor(3,2,64,64) -- 3 planes, 2 frames of 64x64 each
out3 = net_new:forward(inp:float()) -- should be 32 x 29 x 29
elseif opt.nettype == 'rforest' then
rnd1 = 1 -- random 1st layer?
if not(rnd1) then kernels1 = torch.load('ol-1l-32-weights.net') end
poolsize = 2
if not(rnd1) then nk1 = kernels1:size(1) else nk1=32 end
nk2 = 32
fanin1 = 1
fanin2 = 4
is1 = 7
is2 = 7
-- 1st layer:
net_new = nn.Sequential()
net_new:add(nn.SpatialConvolutionMap(nn.tables.random(3, nk1, fanin1), is1, is1))
net_new:add(nn.Tanh())
net_new:add(nn.SpatialLPPooling(nk1, 2, poolsize, poolsize, poolsize, poolsize))
--net_new:add(nn.SpatialSubtractiveNormalization(nk1, normkernel)) -- without this also works fine
-- 2nd layer: create up to lnmax random forest of parallel layers:
lnmax = 10
net_newc=nn.Concat(1)
for ln = 1, lnmax do
net_new2 = nn.Sequential()
net_new2:add(nn.SpatialConvolutionMap(nn.tables.random(nk1, nk2, fanin2), is2, is2))
net_new2:add(nn.Tanh())
net_new2:add(nn.SpatialLPPooling(nk2, 2, poolsize, poolsize, poolsize, poolsize))
--net_new2:add(nn.SpatialSubtractiveNormalization(nk2, normkernel))
net_newc:add(net_new2)
end
net_new:add(net_newc)
--net_new:add(nn.Sum(1))
net_new.modules[1].gradInput = torch.zeros(3,46,46) -- init layer for OL inferring sizes later
if not(rnd1) then net_new.modules[1].weight = kernels1 end
if not(rnd1) then net_new.modules[1].bias = net_new.modules[1].bias*0 end
elseif opt.nettype == 'SADrforest' then
net_new = nn.Sequential()
net_new:add(layer1)
-- create up to lnmax random forest of parallel layers:
lnmax = 10
net_newc=nn.Concat(1)
for ln = 1, lnmax do
net_new2 = nn.Sequential()
net_new2:add(layer2)
net_newc:add(net_new2)
end
net_new:add(net_newc)
--net_new:add(nn.Sum(1))
net_new.modules[1].gradInput = torch.zeros(3,46,46) -- init layer for OL inferring sizes later
else print('error: no network type specified')
end
-- test net:
inp = torch.Tensor(3, 64,64)
out2 = net_new:forward(inp:float())
inp = torch.Tensor(3,46,46)
out1 = net_new:forward(inp:float())
-- save final product network:
torch.save('../online-learner/CL.net', net_new)
--if opt.archn == 1 then torch.save('../online-learner/CL3.net', net_new) else torch.save('../online-learner/CL2.net', net_new) end