-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmeta.yml
137 lines (110 loc) · 3.96 KB
/
meta.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
fullname: AAC Tactics
shortname: aac-tactics
organization: coq-community
community: true
action: true
nix: true
plugin: true
doi: 10.1007/978-3-642-25379-9_14
branch: master
coqdoc: true
coqdoc_index: docs/coqdoc/toc.html
synopsis: >-
Coq tactics for rewriting universally quantified equations, modulo
associative (and possibly commutative and idempotent) operators
description: |-
This Coq plugin provides tactics for rewriting and proving universally
quantified equations modulo associativity and commutativity of some operator,
with idempotent commutative operators enabling additional simplifications.
The tactics can be applied for custom operators by registering the operators and
their properties as type class instances. Instances for many commonly used operators,
such as for binary integer arithmetic and booleans, are provided with the plugin.
publications:
- pub_doi: 10.1007/978-3-642-25379-9_14
pub_url: https://arxiv.org/abs/1106.4448
pub_title: Tactics for Reasoning modulo AC in Coq
authors:
- name: Thomas Braibant
initial: true
- name: Damien Pous
initial: true
- name: Fabian Kunze
initial: false
maintainers:
- name: Karl Palmskog
nickname: palmskog
opam-file-maintainer: [email protected]
opam-file-version: dev
license:
fullname: GNU Lesser General Public License v3.0 or later
identifier: LGPL-3.0-or-later
supported_coq_versions:
text: master (use the corresponding branch or release for other Coq versions)
opam: '{= "dev"}'
supported_ocaml_versions:
text: 4.09.0 or later
opam: '{>= "4.09.0"}'
tested_coq_nix_versions:
- coq_version: 'master'
tested_coq_opam_versions:
- version: dev
namespace: AAC_tactics
keywords:
- name: reflexive tactic
- name: rewriting
- name: rewriting modulo associativity and commutativity
- name: rewriting modulo ac
- name: decision procedure
categories:
- name: Miscellaneous/Coq Extensions
- name: Computer Science/Decision Procedures and Certified Algorithms/Decision procedures
documentation: |
## Documentation
The following example shows an application of the tactics for reasoning over Z binary numbers:
```coq
From AAC_tactics Require Import AAC.
From AAC_tactics Require Instances.
From Coq Require Import ZArith.
Section ZOpp.
Import Instances.Z.
Variables a b c : Z.
Hypothesis H: forall x, x + Z.opp x = 0.
Goal a + b + c + Z.opp (c + a) = b.
aac_rewrite H.
aac_reflexivity.
Qed.
Goal Z.max (b + c) (c + b) + a + Z.opp (c + b) = a.
aac_normalise.
aac_rewrite H.
aac_reflexivity.
Qed.
End ZOpp.
```
The file [Tutorial.v](theories/Tutorial.v) provides a succinct introduction
and more examples of how to use this plugin.
The file [Instances.v](theories/Instances.v) defines several type class instances
for frequent use-cases of this plugin, that should allow you to use it off-the-shelf.
Namely, it contains instances for:
- Peano naturals (`Import Instances.Peano.`)
- Z binary numbers (`Import Instances.Z.`)
- Lists (`Import Instances.Lists.`)
- N binary numbers (`Import Instances.N.`)
- Positive binary numbers (`Import Instances.P.`)
- Rational numbers (`Import Instances.Q.`)
- Prop (`Import Instances.Prop_ops.`)
- Booleans (`Import Instances.Bool.`)
- Relations (`Import Instances.Relations.`)
- all of the above (`Import Instances.All.`)
To understand the inner workings of the tactics, please refer to
the `.mli` files as the main source of information on each `.ml` file.
See also the [latest coqdoc
documentation](https://coq-community.org/aac-tactics/docs/coqdoc/toc.html)
and the [latest ocamldoc
documentation](https://coq-community.org/aac-tactics/docs/ocamldoc/index.html).
## Acknowledgements
The initial authors are grateful to Evelyne Contejean, Hugo Herbelin,
Assia Mahboubi, and Matthieu Sozeau for highly instructive discussions.
The plugin took inspiration from the plugin tutorial "constructors" by
Matthieu Sozeau, distributed under the LGPL 2.1.
---