-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGesture_Train.py
113 lines (60 loc) · 1.75 KB
/
Gesture_Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# coding: utf-8
# In[22]:
import numpy as np
from keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, Dropout, Flatten
from keras.models import Sequential, save_model
from keras.utils import np_utils
import os
import cv2
from sklearn.utils import shuffle
# In[23]:
path = './gesture/'
# In[24]:
gestures = os.listdir(path)[1:]
x_ , y_ = [], []
for i in gestures:
images = os.listdir(path + i)
for j in images:
if j == ".DS_Store":
continue
img_path = path + i + '/' + j
img = cv2.imread(img_path, 0)
img = np.array(img)
img = img.reshape( (50,50,1) )
img = img/255.0
x_.append(img)
y_.append( int(i) )
# In[25]:
x = np.array(x_)
y = np.array(y_)
y = np_utils.to_categorical(y)
num_classes = y.shape[1]
# In[26]:
x , y = shuffle(x, y, random_state=0)
# In[27]:
split = int( 0.6*( x.shape[0] ) )
train_features = x[ :split ]
train_labels = y[ :split ]
test_features = x[ split: ]
test_labels = y[ split: ]
# In[28]:
model = Sequential()
# In[29]:
model.add( Convolution2D(32, 3, 3, input_shape = (50,50,1) ) )
model.add( Activation('relu') )
model.add( Convolution2D( 64,3,3 ) )
model.add( Activation('relu') )
model.add( MaxPooling2D( pool_size=(2,2) ) )
model.add( Convolution2D( 16, 3, 3 ) )
model.add( Activation('relu') )
model.add( Flatten() )
model.add( Dropout(0.25) )
model.add( Dense(num_classes) )
model.add( Activation('softmax') )
# In[19]:
model.summary()
# In[30]:
model.compile( optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] )
model.fit( train_features, train_labels, validation_data=( test_features, test_labels ), shuffle=True, batch_size=128, nb_epoch=3 )
# In[31]:
model.save('Gesture_Recognize.h5')