forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathllama.cpp
3490 lines (2894 loc) · 120 KB
/
llama.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Defines fileno on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <cstddef>
#include <cstdint>
#include <cstdio>
#endif
#include "llama-util.h"
#include "llama.h"
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include <array>
#include <ctime>
#include <cinttypes>
#include <fstream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <cassert>
#include <cstring>
#include <climits>
#include <memory>
#include <algorithm>
#include <initializer_list>
#include <thread>
#include <atomic>
#include <mutex>
#include <sstream>
#include <numeric>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
// available llama models
enum e_model {
MODEL_UNKNOWN,
MODEL_3B,
MODEL_7B,
MODEL_13B,
MODEL_30B,
MODEL_65B,
};
static const size_t MB = 1024*1024;
// computed for n_ctx == 2048
// TODO: dynamically determine these sizes
// needs modifications in ggml
typedef void (*offload_func_t)(struct ggml_tensor * tensor);
void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
(void) tensor;
}
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 256ull * MB },
{ MODEL_7B, 512ull * MB },
{ MODEL_13B, 512ull * MB },
{ MODEL_30B, 512ull * MB },
{ MODEL_65B, 1024ull * MB },
};
return k_sizes;
}
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 256ull * MB },
{ MODEL_7B, 512ull * MB },
{ MODEL_13B, 512ull * MB },
{ MODEL_30B, 512ull * MB },
{ MODEL_65B, 1024ull * MB },
};
return k_sizes;
}
// 2*n_embd*n_ctx*n_layer*sizeof(float16)
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 682ull * MB },
{ MODEL_7B, 1026ull * MB },
{ MODEL_13B, 1608ull * MB },
{ MODEL_30B, 3124ull * MB },
{ MODEL_65B, 5120ull * MB },
};
return k_sizes;
}
// this is mostly needed for temporary mul_mat buffers to dequantize the data
// not actually needed if BLAS is disabled
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 512ull * MB },
{ MODEL_7B, 768ull * MB },
{ MODEL_13B, 1024ull * MB },
{ MODEL_30B, 1280ull * MB },
{ MODEL_65B, 1536ull * MB },
};
return k_sizes;
}
// default hparams (LLaMA 7B)
struct llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_mult = 256;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
bool operator!=(const llama_hparams & other) const {
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
}
};
struct llama_layer {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct llama_kv_cache {
struct ggml_tensor * k;
struct ggml_tensor * v;
struct ggml_context * ctx = NULL;
llama_ctx_buffer buf;
int n; // number of tokens currently in the cache
~llama_kv_cache() {
if (ctx) {
ggml_free(ctx);
}
#ifdef GGML_USE_CUBLAS
ggml_cuda_free_data(k);
ggml_cuda_free_data(v);
#endif // GGML_USE_CUBLAS
}
};
struct llama_model {
e_model type = MODEL_UNKNOWN;
llama_hparams hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * output;
std::vector<llama_layer> layers;
int n_gpu_layers;
// context
struct ggml_context * ctx = NULL;
// key + value cache for the self attention
// TODO: move to llama_state
struct llama_kv_cache kv_self;
// the model memory buffer
llama_ctx_buffer buf;
// model memory mapped file
std::unique_ptr<llama_mmap> mapping;
// objects representing data potentially being locked in memory
llama_mlock mlock_buf;
llama_mlock mlock_mmap;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
~llama_model() {
if (ctx) {
ggml_free(ctx);
}
#ifdef GGML_USE_CUBLAS
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cuda_free_data(tensors_by_name[i].second);
}
ggml_cuda_free_scratch();
#elif defined(GGML_USE_CLBLAST)
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cl_free_data(tensors_by_name[i].second);
}
#endif
}
};
struct llama_vocab {
using id = int32_t;
using token = std::string;
struct token_score {
token tok;
float score;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token;
};
struct llama_context {
std::mt19937 rng;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
bool has_evaluated_once = false;
int64_t t_sample_us = 0;
int64_t t_eval_us = 0;
int64_t t_p_eval_us = 0;
int32_t n_sample = 0; // number of tokens sampled
int32_t n_eval = 0; // number of eval calls
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
llama_model model;
llama_vocab vocab;
size_t mem_per_token = 0;
// decode output (2-dimensional array: [n_tokens][n_vocab])
std::vector<float> logits;
bool logits_all = false;
// input embedding (1-dimensional array: [n_embd])
std::vector<float> embedding;
// memory buffers used to evaluate the model
// TODO: move in llama_state
llama_ctx_buffer buf_compute;
llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
#ifdef GGML_USE_METAL
ggml_metal_context * ctx_metal = NULL;
#endif
int buf_last = 0;
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
void use_buf(struct ggml_context * ctx, int i) {
#if defined(LLAMA_USE_SCRATCH)
size_t last_size = 0;
if (i == -1) {
last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
} else {
auto & buf = buf_scratch[i];
last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
}
if (buf_last >= 0) {
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
}
buf_last = i;
#else
(void) i;
(void) ctx;
#endif
}
size_t get_buf_max_mem(int i) const {
#if defined(LLAMA_USE_SCRATCH)
return buf_max_size[i];
#else
(void) i;
return 0;
#endif
}
};
template <typename T>
static T checked_mul(T a, T b) {
T ret = a * b;
if (a != 0 && ret / a != b) {
throw std::runtime_error(format("overflow multiplying %llu * %llu",
(unsigned long long) a, (unsigned long long) b));
}
return ret;
}
static size_t checked_div(size_t a, size_t b) {
if (b == 0 || a % b != 0) {
throw std::runtime_error(format("error dividing %zu / %zu", a, b));
}
return a / b;
}
static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
char buf[256];
snprintf(buf, sizeof(buf), "%5u", ne.at(0));
for (size_t i = 1; i < ne.size(); i++) {
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
}
return buf;
}
static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
size_t size = ggml_type_size(type);
for (uint32_t dim : ne) {
size = checked_mul<size_t>(size, dim);
}
return size / ggml_blck_size(type);
}
struct llama_load_tensor_shard {
std::vector<uint32_t> ne;
size_t size;
enum ggml_type type;
size_t file_idx;
size_t file_off;
void calc_size() {
size = llama_calc_tensor_size(ne, type);
}
};
enum llama_split_type {
SPLIT_NONE,
SPLIT_BY_COLUMNS,
SPLIT_BY_ROWS
};
struct llama_load_tensor {
std::vector<llama_load_tensor_shard> shards;
std::string name;
enum ggml_type type = GGML_TYPE_F32;
llama_split_type split_type = SPLIT_NONE;
std::vector<uint32_t> ne;
size_t size;
struct ggml_tensor * ggml_tensor = NULL;
uint8_t * data;
llama_load_tensor(const std::string & name) : name(name) {}
void calc_all() {
calc_type();
calc_split_type();
calc_ne();
calc_size();
}
void calc_type() {
const auto & first_shard = shards.at(0);
for (const auto & shard : shards) {
if (shard.type != first_shard.type) {
throw std::runtime_error(format("inconsistent tensor shard type in '%s'", name.c_str()));
}
}
type = first_shard.type;
}
void calc_split_type() {
if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
shards.size() == 1) { // only one file?
split_type = SPLIT_NONE;
} else if (name.find("tok_embeddings.") == 0 ||
name.find(".attention.wo.weight") != std::string::npos ||
name.find(".feed_forward.w2.weight") != std::string::npos) {
split_type = SPLIT_BY_COLUMNS;
} else {
split_type = SPLIT_BY_ROWS;
}
}
void calc_ne() {
const auto & first_shard = shards.at(0);
for (const auto & shard : shards) {
if (shard.ne != first_shard.ne) {
throw std::runtime_error(format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str()));
}
}
ne = first_shard.ne;
LLAMA_ASSERT(shards.size() <= UINT32_MAX);
uint32_t n_shards = (uint32_t) shards.size();
switch (split_type) {
case SPLIT_NONE:
ne = first_shard.ne;
break;
case SPLIT_BY_COLUMNS:
ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
first_shard.ne[1]};
break;
case SPLIT_BY_ROWS:
ne = {first_shard.ne[0],
checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
break;
}
}
void calc_size() {
size = llama_calc_tensor_size(ne, type);
}
};
struct llama_load_tensors_map {
// tensors is kept in a separate vector to preserve file order
std::vector<llama_load_tensor> tensors;
std::unordered_map<std::string, size_t> name_to_idx;
};
enum llama_file_version {
LLAMA_FILE_VERSION_GGML,
LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
LLAMA_FILE_VERSION_GGJT_V1, // added padding
LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
};
struct llama_file_loader {
llama_file file;
llama_file_version file_version;
llama_hparams hparams;
llama_vocab vocab;
llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
: file(fname, "rb") {
fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
read_magic();
read_hparams();
read_vocab();
read_tensor_metadata(file_idx, tensors_map);
}
void read_magic() {
uint32_t magic = file.read_u32();
if (magic == LLAMA_FILE_MAGIC_GGML) {
file_version = LLAMA_FILE_VERSION_GGML;
return;
}
uint32_t version = file.read_u32();
switch (magic) {
case LLAMA_FILE_MAGIC_GGMF:
switch (version) {
case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
}
break;
case LLAMA_FILE_MAGIC_GGJT:
switch (version) {
case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
}
}
throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
magic, version));
}
void read_hparams() {
hparams.n_vocab = file.read_u32();
hparams.n_embd = file.read_u32();
hparams.n_mult = file.read_u32();
hparams.n_head = file.read_u32();
hparams.n_layer = file.read_u32();
hparams.n_rot = file.read_u32();
hparams.ftype = (enum llama_ftype) file.read_u32();
}
void read_vocab() {
vocab.id_to_token.resize(hparams.n_vocab);
for (uint32_t i = 0; i < hparams.n_vocab; i++) {
uint32_t len = file.read_u32();
std::string word = file.read_string(len);
float score = 0.0f;
if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
file.read_raw(&score, sizeof(score));
}
vocab.token_to_id[word] = i;
auto & tok_score = vocab.id_to_token[i];
tok_score.tok = std::move(word);
tok_score.score = score;
}
}
void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
while (file.tell() < file.size) {
llama_load_tensor_shard shard;
uint32_t n_dims = file.read_u32();
uint32_t name_len = file.read_u32();
shard.type = (enum ggml_type) file.read_u32();
shard.ne.resize(n_dims);
file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
std::string name = file.read_string(name_len);
if (n_dims < 1 || n_dims > 2) {
throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
}
switch (shard.type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
break;
default: {
throw std::runtime_error(format("unrecognized tensor type %u\n", shard.type));
}
}
if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
// skip to the next multiple of 32 bytes
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
}
shard.file_idx = file_idx;
shard.file_off = file.tell();
shard.calc_size();
file.seek(shard.size, SEEK_CUR);
auto it = tensors_map.name_to_idx.find(name);
size_t idx;
if (it != tensors_map.name_to_idx.end()) {
idx = it->second;
} else {
tensors_map.tensors.emplace_back(name);
idx = tensors_map.tensors.size() - 1;
tensors_map.name_to_idx.emplace(name, idx);
}
tensors_map.tensors.at(idx).shards.push_back(shard);
}
}
};
struct llama_file_saver {
llama_file file;
llama_file_loader * any_file_loader;
llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
: file(fname, "wb"), any_file_loader(any_file_loader) {
fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
write_magic();
write_hparams(new_ftype);
write_vocab();
}
void write_magic() {
file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_u32(LLAMA_FILE_VERSION); // version
}
void write_hparams(enum llama_ftype new_ftype) {
const llama_hparams & hparams = any_file_loader->hparams;
file.write_u32(hparams.n_vocab);
file.write_u32(hparams.n_embd);
file.write_u32(hparams.n_mult);
file.write_u32(hparams.n_head);
file.write_u32(hparams.n_layer);
file.write_u32(hparams.n_rot);
file.write_u32(new_ftype);
}
void write_vocab() {
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
}
uint32_t n_vocab = any_file_loader->hparams.n_vocab;
for (uint32_t i = 0; i < n_vocab; i++) {
const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
file.write_u32((uint32_t) token_score.tok.size());
file.write_raw(token_score.tok.data(), token_score.tok.size());
file.write_raw(&token_score.score, sizeof(token_score.score));
}
}
void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
switch (new_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
break;
default: LLAMA_ASSERT(false);
}
file.write_u32((uint32_t) tensor.ne.size());
file.write_u32((uint32_t) tensor.name.size());
file.write_u32(new_type);
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
file.write_raw(tensor.name.data(), tensor.name.size());
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
file.write_raw(new_data, new_size);
}
};
struct llama_model_loader {
std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
llama_load_tensors_map tensors_map;
bool use_mmap;
size_t num_ggml_tensors_created = 0;
struct ggml_context * ggml_ctx = NULL;
std::unique_ptr<llama_mmap> mapping;
llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
file_loaders.emplace_back(first_file);
uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
for (uint32_t i = 1; i < n_parts; i++) {
std::string fname = fname_base + "." + std::to_string(i);
auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
file_loaders.emplace_back(ith_file);
if (ith_file->hparams != first_file->hparams) {
throw std::runtime_error(format("llama.cpp: hparams inconsistent between files"));
}
}
if (!llama_mmap::SUPPORTED) {
use_mmap = false;
}
if (use_mmap && alignment_prevents_mmap()) {
fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
use_mmap = false;
}
this->use_mmap = use_mmap;
for (llama_load_tensor & lt : tensors_map.tensors) {
lt.calc_all();
}
}
bool alignment_prevents_mmap() {
for (const llama_load_tensor & lt : tensors_map.tensors) {
for (const llama_load_tensor_shard & shard : lt.shards) {
if (shard.file_off & 3) {
return true;
}
}
}
return false;
}
uint32_t guess_n_parts() const {
auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
if (it == tensors_map.name_to_idx.end()) {
throw std::runtime_error(std::string("missing tok_embeddings.weight"));
}
const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
}
void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
*ctx_size_p = *mmapped_size_p = 0;
for (const llama_load_tensor & lt : tensors_map.tensors) {
*ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
}
}
struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
auto it = tensors_map.name_to_idx.find(name);
if (it == tensors_map.name_to_idx.end()) {
throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
}
llama_load_tensor & lt = tensors_map.tensors.at(it->second);
if (lt.ne != ne) {
throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
}
return get_tensor_for(lt, backend);
}
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
struct ggml_tensor * tensor;
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, true);
}
if (lt.ne.size() == 2) {
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
} else {
LLAMA_ASSERT(lt.ne.size() == 1);
tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
}
ggml_set_name(tensor, lt.name.c_str());
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, use_mmap);
}
tensor->backend = backend;
lt.ggml_tensor = tensor;
num_ggml_tensors_created++;
return tensor;
}
void verify_correct_load() const {
if (num_ggml_tensors_created != tensors_map.tensors.size()) {
throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
}
}
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
size_t data_size = 0;
size_t prefetch_size = 0;
size_t lock_size = 0;
for (const llama_load_tensor & lt : tensors_map.tensors) {
data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
prefetch_size += lt.size;
}
}
if (use_mmap) {
mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
if (lmlock) {
lmlock->init(mapping->addr);
}
}
size_t done_size = 0;
for (llama_load_tensor & lt : tensors_map.tensors) {
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
lt.data = (uint8_t *) lt.ggml_tensor->data;
// allocate temp buffer if not using mmap
if (!use_mmap && lt.data == NULL) {
GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
}
load_data_for(lt);
switch(lt.ggml_tensor->backend) {
case GGML_BACKEND_CPU:
lt.ggml_tensor->data = lt.data;
if (use_mmap && lmlock) {
lock_size += lt.size;
lmlock->grow_to(lock_size);
}
break;
#if defined(GGML_USE_CUBLAS)
case GGML_BACKEND_GPU:
case GGML_BACKEND_GPU_SPLIT:
ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#elif defined(GGML_USE_CLBLAST)
case GGML_BACKEND_GPU:
ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#endif
default:
continue;
}
done_size += lt.size;
}
}
void load_data_for(llama_load_tensor & lt) {
if (use_mmap) {
LLAMA_ASSERT(lt.shards.size() == 1);
lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
} else if (lt.split_type == SPLIT_NONE) {
llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
file.seek(lt.shards.at(0).file_off, SEEK_SET);
file.read_raw(lt.data, lt.size);
} else if (lt.split_type == SPLIT_BY_ROWS) {
size_t offset = 0;
for (llama_load_tensor_shard & shard : lt.shards) {
llama_file & file = file_loaders.at(shard.file_idx)->file;
file.seek(shard.file_off, SEEK_SET);
file.read_raw(lt.data + offset, shard.size);
offset += shard.size;
}
LLAMA_ASSERT(offset == lt.size);
} else if (lt.split_type == SPLIT_BY_COLUMNS) {
// Let's load the data into temporary buffers to ensure the OS performs large loads.
std::vector<llama_buffer> tmp_bufs(lt.shards.size());
for (size_t i = 0; i < lt.shards.size(); i++) {
llama_load_tensor_shard & shard = lt.shards.at(i);
llama_file & file = file_loaders.at(shard.file_idx)->file;
file.seek(shard.file_off, SEEK_SET);
tmp_bufs.at(i).resize(shard.size);
file.read_raw(tmp_bufs.at(i).addr, shard.size);
}
// Then reshape.
size_t num_rows = lt.ne.at(1);
size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
size_t out_offset = 0;
for (size_t row = 0; row < num_rows; row++) {
for (llama_buffer & tmp_buf : tmp_bufs) {
memcpy(lt.data + out_offset,
tmp_buf.addr + row * per_shard_row_size,
per_shard_row_size);
out_offset += per_shard_row_size;
}
}
LLAMA_ASSERT(out_offset == lt.size);
}
if (0) {
print_checksum(lt);
}
}
static void print_checksum(llama_load_tensor & lt) {
uint32_t sum = 0;
for (size_t i = 0; i < lt.size; i++) {
uint8_t byte = lt.data[i];
sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
}
fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
llama_format_tensor_shape(lt.ne).c_str(), lt.size);
}
};
//
// kv cache
//
static bool kv_cache_init(
const struct llama_hparams & hparams,
struct llama_kv_cache & cache,
ggml_type wtype,
int n_ctx,
int n_gpu_layers) {
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int64_t n_mem = n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
cache.n = 0;
struct ggml_init_params params;
params.mem_size = cache.buf.size;
params.mem_buffer = cache.buf.addr;
params.no_alloc = false;
cache.ctx = ggml_init(params);
if (!cache.ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
ggml_set_name(cache.k, "cache_k");
ggml_set_name(cache.v, "cache_v");
(void) n_gpu_layers;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer + 1) {
ggml_cuda_assign_buffers_no_scratch(cache.v);
}
if (n_gpu_layers > n_layer + 2) {
ggml_cuda_assign_buffers_no_scratch(cache.k);
}
#endif // GGML_USE_CUBLAS
return true;
}
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.n_ctx =*/ 512,
/*.n_batch =*/ 512,
/*.gpu_layers =*/ 0,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ {0},
/*.low_vram =*/ false,
/*.seed =*/ -1,
/*.f16_kv =*/ true,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.embedding =*/ false,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
};
return result;
}
struct llama_model_quantize_params llama_model_quantize_default_params() {
struct llama_model_quantize_params result = {
/*.nthread =*/ 0,
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
/*.allow_requantize =*/ false,
/*.quantize_output_tensor =*/ true,
};
return result;
}
bool llama_mmap_supported() {
return llama_mmap::SUPPORTED;
}
bool llama_mlock_supported() {
return llama_mlock::SUPPORTED;
}
void llama_init_backend() {
ggml_time_init();
// needed to initialize f16 tables
{
struct ggml_init_params params = { 0, NULL, false };
struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx);
}
}
int64_t llama_time_us() {
return ggml_time_us();
}
//
// model loading
//
static const char *llama_file_version_name(llama_file_version version) {
switch (version) {
case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
}
return "unknown";
}
static const char *llama_ftype_name(enum llama_ftype ftype) {
switch (ftype) {
case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
return "mostly Q4_1, some F16";