-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_section_starting_points.py
146 lines (119 loc) · 5.82 KB
/
cross_section_starting_points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from scipy import misc
from skimage import measure
import geometry as geo
# import numpy as np
import matplotlib.pyplot as plt
import cmath
def process_image(img, min_section_vertices=210):
foreground = (img[:, :, 3] != 0) & (img[:, :, 1] > 240)
plt.imsave('01_foreground.png', img)
# identify the image contours
contours = measure.find_contours(foreground, 0.8)
# identify those regions with more than n vertices
greater_than_n = []
# draw the identified contours with a distinctive colour
plt.figure()
fig, (ax) = plt.subplots(1, 1, sharex='col', figsize=(20, 10))
ax.set_title('Identified contours w/more than ' + str(min_section_vertices) + ' edges highlighted in colour')
ax.imshow(img, interpolation='nearest', cmap=plt.cm.get_cmap('grey'))
for n, contour in enumerate(contours):
if len(contour) > min_section_vertices:
greater_than_n.append(n)
ax.plot(contour[:, 1], contour[:, 0], linewidth=2)
plt.savefig('02_contours.png')
return [contours, greater_than_n]
def special_contours(contours, greater_than_n, external, internal):
plt.figure()
plt.plot(contours[greater_than_n[external]][:, 1], contours[greater_than_n[external]][:, 0])
for i in internal:
plt.plot(contours[greater_than_n[i]][:, 1], contours[greater_than_n[i]][:, 0])
plt.axis([0, 2588, 1858, 0])
plt.savefig('03_special_contours.png')
def find_vertices(contours, greater_than_n, simplify=True, tolerance=0.25):
"""
:param contours:
:param greater_than_n:
:param simplify:
:param tolerance:
:return: a list containing a list of vertices for each sub section / region in the cross section
"""
vertices = []
# manually store the first polygons identified
for i in range(len(greater_than_n)):
if simplify:
# ()
section_vertices = measure.approximate_polygon(contours[greater_than_n[i]], tolerance)
else:
section_vertices = contours[greater_than_n[i]]
# add this to the global vertices storage
vertices.append(section_vertices)
return vertices
def identify_source_points(vertices, use_internal_normal=True):
source_points = []
# traverse the vertices on the contour
n = len(vertices)
for i in range(n-1):
p1 = (vertices[i][0], vertices[i][1])
p2 = (vertices[i+1][0], vertices[i+1][1])
source_points.append({'p': geo.middle_point(p1, p2), 'normal': geo.unit_vector_2p(
geo.two_points_normal(p1, p2, use_internal_normal))})
return source_points
def cells_in_section(section_vertices, cell_width_mean, cell_width_variance=0.0001,
oriented_towards_centre=True, secretory_cell_probability=0.5):
"""
Traverse each pair of vertices forming the section.
Get the section orientation using its normal
Compute the number of cells fitting between both vertices.
:param section_vertices:
:param cell_width_mean: in millimetres
:param cell_width_variance: in millimetres
:param oriented_towards_centre:
:param secretory_cell_probability: Probability for any cells of being a secretory cell. Usually 0.5
:return: list of cells in the current section
"""
cells = list()
limit = len(section_vertices)
for i in range(1, limit):
distance_between_vertices = geo.distance(section_vertices[i-1], section_vertices[i])
# compute the number of cells to generate
n_cells = distance_between_vertices / cell_width_mean
# then check the segment between the last and the first vertices
return cells
def generate_cells(vertices, invert_orientation, secretory_cell_probability=0.5, cell_diameter_mm2=0.005):
"""
A typical pig oviduct measures 150mm in length with a diameter of 1 mm.
Using the formula for the lateral surface area of a cylinder, we get a total area of 706.96 mm^2.
LSA = 2 * pi * r * h
(We are not considering the internal folds here)
Considering a cell size of 5um^2, there would be a total of 141,372,000 cells.
:param vertices: list with lists of vertices forming each shape of the cross section. One list per shape.
:param invert_orientation: list of section ids which cells must be oriented facing away from the centre of the shape
:param secretory_cell_probability: Probability for any cells of being a secretory cell. Usually 0.5
:param cell_diameter_mm2: target cell diameter in millimetres squared
:return:
"""
cell_width = cmath.sqrt(cell_diameter_mm2/cmath.pi) * 2
coordinates = []
# As previously stated, contours 12 & 14 lay within contour 11, their normals must point in the other direction
for i in range(len(vertices)):
# previously, we were identifying the source points directly
# now, we need to compute how many
if i in invert_orientation:
source_points = identify_source_points(vertices[i], False)
cells = cells_in_section(vertices[i], cell_width, oriented_towards_centre=False,
secretory_cell_probability=secretory_cell_probability)
else:
source_points = identify_source_points(vertices[i])
cells = cells_in_section(vertices[i], cell_width, secretory_cell_probability=secretory_cell_probability)
coordinates.append(source_points)
for i in range(len(coordinates)):
print('figure:', i, 'n.s.coordinates:', len(coordinates[i]))
return coordinates
if __name__ == '__main__':
image = misc.imread('./ampulla_(3-1to3-5_L2-3_tr-amp)_2.png')
[cs, gtn] = process_image(image)
must_flip_orientation = [4, 5]
special_contours(cs, gtn, 3, internal=must_flip_orientation)
all_vertices = find_vertices(cs, gtn, simplify=True)
starting_coordinates = generate_cells(all_vertices, invert_orientation=must_flip_orientation)
# export the coordinates