forked from rohjunha/multiple-topologies-prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluator_vanilla_mpc.py
541 lines (469 loc) · 23.3 KB
/
evaluator_vanilla_mpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
from __future__ import division, print_function
import argparse
import codecs
import datetime
import glob
import json
import logging
import math
import os
import random
# System level imports
import sys
import time
from collections import deque
from functools import partial
import carla
import pandas as pd
import scipy
import torch
import tqdm
from controller import controller_eval as controller2d
from controller.cost_function import CostFunction
from custom_classes import World, Logger, GraphNetPredictor
from custom_classes import get_behavior_pairs, generate_start_pos_combinations, get_current_pose
from mtp.argument import fetch_argument
from mtp.config import get_config_list
from mtp.data.data_loader import get_trajectory_data_loader
from mtp.networks import fetch_model_iterator
from mtp.train import Trainer
from scenario_configs import SCENARIOS
try:
import numpy as np
except ImportError:
raise RuntimeError(
'cannot import numpy, make sure numpy package is installed')
# ==============================================================================
# -- find carla module ---------------------------------------------------------
# ==============================================================================
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
# ==============================================================================
# -- add PythonAPI for release mode --------------------------------------------
# ==============================================================================
try:
sys.path.append(os.path.dirname(os.path.dirname(
os.path.abspath(__file__))) + '/carla')
except IndexError:
pass
random.seed(42)
np.random.seed(42)
torch.random.manual_seed(42)
# ==============================================================================
# -- Global functions ----------------------------------------------------------
# ==============================================================================
TARGET_THRESHOLD = 10.0
# lookahead path
INTERP_LOOKAHEAD_DISTANCE = 20 # lookahead in meters
INTERP_DISTANCE_RES = 0.5 # distance between interpolated points
def get_world(client, args, scene_id, start_spawn_ids, behavior_pairs):
world = World(client.get_world(), args.filter, scene_id, start_spawn_ids, behavior_pairs)
return world
def initialize_client(args):
client = carla.Client(args.host, args.port)
client.set_timeout(4.0)
return client
def initialize_world(args, client, scene_id, start_spawn_ids, behavior_pairs):
return get_world(client, args, scene_id, start_spawn_ids, behavior_pairs)
def generate_logs_directory(logs_path):
num_agents = [2, 3, 4]
df = pd.DataFrame(columns=["idx", "collision", "time"])
for n in num_agents:
agents_path = os.path.join(logs_path, "agents_{}".format(n))
os.makedirs(agents_path)
for scene_id in SCENARIOS[n]:
csv_path = os.path.join(
agents_path, "agents_{}_scenario_{}".format(n, scene_id))
df.to_csv(csv_path)
def interpolate_waypoints(waypoints_np, wp_distance):
# Linearly interpolate between waypoints and store in a list
wp_interp = [] # interpolated values
# (rows = waypoints, columns = [x, y, v])
wp_interp_hash = [] # hash table which indexes waypoints_np
# to the index of the waypoint in wp_interp
interp_counter = 0 # counter for current interpolated point index
for i in range(waypoints_np.shape[0] - 1):
# Add original waypoint to interpolated waypoints list (and append
# it to the hash table)
wp_interp.append(list(waypoints_np[i]))
wp_interp_hash.append(interp_counter)
interp_counter += 1
# Interpolate to the next waypoint. First compute the number of
# points to interpolate based on the desired resolution and
# incrementally add interpolated points until the next waypoint
# is about to be reached.
num_pts_to_interp = int(np.floor(wp_distance[i] /
float(INTERP_DISTANCE_RES)) - 1)
wp_vector = waypoints_np[i+1] - waypoints_np[i]
wp_uvector = wp_vector / np.linalg.norm(wp_vector)
for j in range(num_pts_to_interp):
next_wp_vector = INTERP_DISTANCE_RES * float(j+1) * wp_uvector
wp_interp.append(list(waypoints_np[i] + next_wp_vector))
interp_counter += 1
# add last waypoint at the end
wp_interp.append(list(waypoints_np[-1]))
wp_interp_hash.append(interp_counter)
interp_counter += 1
return wp_interp, wp_interp_hash
all_traj_data = torch.load('individual_trajs.pth')
def instantiate_agent_data(world, past_hist_size, intention):
world.player.reference_traj = np.array(all_traj_data[intention])
world.player.reference_traj[:, 1] = -1 * world.player.reference_traj[:, 1]
# plt.plot(world.player.reference_traj[:, 0], world.player.reference_traj[:, 1])
# plt.show()
waypoints_np = world.player.reference_traj
wp_distance = [] # distance array
for i in range(1, waypoints_np.shape[0]):
wp_distance.append(
np.sqrt((waypoints_np[i, 0] - waypoints_np[i-1, 0])**2 +
(waypoints_np[i, 1] - waypoints_np[i-1, 1])**2))
wp_distance.append(0) # last distance is 0 because it is the distance
# from the last waypoint to the last waypoint
wp_interp, wp_interp_hash = interpolate_waypoints(
waypoints_np, wp_distance)
waypoints_np = waypoints_np[:, [0, 1, 3]]
controller = controller2d.Controller2D(waypoints_np, world.player.carla_agent)
controller.set_path(wp_interp)
world.player.set_controller(controller)
world.player.set_agent_info(waypoints_np, wp_interp, wp_interp_hash,
wp_distance, deque(maxlen=past_hist_size))
return waypoints_np
# ==============================================================================
# -- World ---------------------------------------------------------------
# ==============================================================================
class Waypoint:
def __init__(self, transform, speed):
self.transform = transform
self.target_speed = speed
def run_experiments_for_n_agents(args, trainer, num_agents, logs_path):
world = None
if args.no_rendering:
no_rendering = True
else:
no_rendering = False
T = 15
PREDICTION_STEP = 1
TOTAL_TRIALS = args.num_exp
rollout_size = 25
num_min_waypoints = 5
center_coordinate = [31., -30.]
method = 'mfp'
predictor = GraphNetPredictor(trainer, u_dim=4, B=1, N=num_agents, T=T, rollout_size=25,
d=4)
exp_start = time.time()
scenarios = json.loads(codecs.open(args.scenarios, 'r', encoding='utf-8').read())['split']
exp_start = time.time()
config_file = args.scenarios
config_name = config_file.split('.')[0]
exp_configs = json.loads(codecs.open(config_file, 'r', encoding='utf-8').read())
scenarios = exp_configs['split']
behavior_pairs = get_behavior_pairs(num_agents)
behavior_cases = exp_configs['behavior_id']
num_trials_per_behavior = TOTAL_TRIALS // len(behavior_cases)
data_logger = Logger(num_agents, logs_path, scenarios)
intersection_center = [257.0, -248.0]
client = initialize_client(args)
all_trajs_data = dict()
for num_scene, scene_id in enumerate(scenarios):
scene_steps = 0
csv_log_path = os.path.join(
logs_path, "agents_{}_scenario_{}_{}.csv".format(num_agents, scene_id, config_name))
logs = []
for b_idx, behavior_id in enumerate(behavior_cases):
behavior_pair = behavior_pairs[behavior_id]
start_spawn_ids = generate_start_pos_combinations(scene_id)
for spawn_id in start_spawn_ids:
print("SCENE ID: ", scene_id, " BEHAVIOR: ", behavior_pair, " SPAWN_ID: ", spawn_id)
for param_id in tqdm.tqdm(range(num_trials_per_behavior)):
num_runs = 0
ego_end_time = 0.
ego_target_reached = False
collision = False
time_complete = False
data = []
predictor.set_src_dst_tensor(scene_id)
start_predictor = False
debug_log_gt = []
debug_log_pred = []
mpc_start = False
# data_logger.reset_episode()
try:
world = initialize_world(args, client, scene_id, spawn_id, behavior_pair)
world.get_intersection_distance(intersection_center)
tot_target_reached = 0
print("Rollout Num: ", num_runs)
settings = world.world.get_settings()
settings.synchronous_mode = True # Enables synchronous mode
settings.fixed_delta_seconds = 0.1
settings.no_rendering_mode = no_rendering
world.world.apply_settings(settings)
frame = 0
steps = 0
world_snapshot = world.world.get_snapshot()
prev_timestamp = 0.0
world.start_time = world_snapshot.timestamp.elapsed_seconds
steps = 0
for player in world.agents:
player_snapshot = world_snapshot.find(
player.carla_agent.id)
player.curr_wp = get_current_pose(player_snapshot)
if scene_id[0] == "0" or scene_id[0] == "2":
dist_from_center = math.fabs(world.player.curr_wp[0] - intersection_center[0])
else:
dist_from_center = math.fabs(world.player.curr_wp[1] - intersection_center[1])
world_snapshot = world.world.get_snapshot()
for player in world._agents:
player_snapshot = world_snapshot.find(
player.carla_agent.id)
player.curr_wp = get_current_pose(player_snapshot)
player.prev_wp = get_current_pose(player_snapshot)
ego_waypoints = instantiate_agent_data(world, 15, scene_id[:2])
pred_traj = None
world.update_behavior_params()
# plt.plot(world.player.reference_traj[:, 0], -world.player.reference_traj[:, 1])
cost_function = CostFunction(rollout_size)
world.player.controller.set_path(world.player.reference_traj)
while not time_complete:
steps += 1
frame += 1
if steps > 300:
time_complete = True
world.world.tick()
world.tick(frame, method)
if scene_id[0] == "0" or scene_id[0] == "2":
dist_from_center = math.fabs(world.player.curr_wp[0] - intersection_center[0])
else:
dist_from_center = math.fabs(world.player.curr_wp[1] - intersection_center[1])
collision = world.check_collision(world_snapshot.timestamp)
if collision and (not world.player.target_reached):
print("Collision detected!")
break
restart = True
for player in world.agents:
if not player.target_reached:
restart = False
if restart:
time_complete = True
world.convert_agents_to_box()
dist = scipy.spatial.distance.cdist([intersection_center], [[world.player.curr_wp[0], world.player.curr_wp[1]]])
if world.player.curr_wp[1] < -270.:
world.player.target_reached = True
if dist < 25:
start_predictor = True
else:
start_predictor = False
world.wp_traversed.append(world.player.curr_wp[:2])
world_snapshot = world.world.get_snapshot()
game_timestamp = world_snapshot.timestamp.elapsed_seconds
current_timestamp = float(game_timestamp) #/ 1000.0
dt = current_timestamp - prev_timestamp
debug_log_gt.append(world.agents[1].curr_wp + [steps])
# plt.plot([world.agents[1].curr_wp[0]], [world.agents[1].curr_wp[1]], [steps * dt], "ro")
np_controls = []
for player, player_ctrl in zip(world.agents, world.controllers):
if player.target_reached == True:
continue
if player.carla_agent.id == world.player.carla_agent.id:
if start_predictor and steps % PREDICTION_STEP == 0 and world.player.target_reached:
world.player.update_waypoints()
world.player.controller.update_waypoints(world.player.new_waypoints)
# world.player.controller.update_waypoints(world.player.new_waypoints)
world.player.controller.update_values(*world.player.curr_wp, world.player.get_speed(), current_timestamp, frame)
world.player.controller.update_controls_2(world)
cmd_throttle, cmd_steer, cmd_brake = player.controller.get_commands()
player.control = carla.VehicleControl(throttle=cmd_throttle.item(), steer=cmd_steer.item(), brake=cmd_brake)
player_ctrl.update_information(world)
speed_limit = world.player.carla_agent.get_speed_limit()
player_ctrl.get_local_planner().set_speed(speed_limit)
control = player_ctrl.run_step()
continue
dist = player_ctrl.vehicle.get_location().distance(
player_ctrl.end_waypoint.transform.location)
if dist < TARGET_THRESHOLD:
player.target_reached = True
player.control = carla.VehicleControl(throttle=0., steer=0., brake=1.0)
print("Target accomplished")
continue
# world.init()
tot_target_reached += 1
player_ctrl.update_information(world)
speed_limit = world.player.carla_agent.get_speed_limit()
# print ("Speed Lim: ", speed_limit)
player_ctrl.get_local_planner().set_speed(speed_limit)
control = player_ctrl.run_step()
player.control = control
# player.control = carla.VehicleControl(throttle=0., steer=0., brake=1.0)
for i, player in enumerate(world.agents):
player.carla_agent.apply_control(player.control)
# world.player.carla_agent.apply_control(player.control)
# data_logger.step(world)
if world.player.target_reached and not ego_target_reached:
ego_end_time = world.world.get_snapshot().timestamp.elapsed_seconds
ego_target_reached = True
prev_timestamp = current_timestamp
data.append(world.player.curr_wp + [world.player.get_speed()])
finally:
if not collision:
scene_steps += 1
# data_logger.save(scene_steps)
else:
if world.player.target_reached:
collision = 0.
a = 1
# data_logger.remove_collision_data()
num_runs += 1
all_trajs_data[scene_id] = data
predictor.stop()
torch.save(debug_log_gt, f'debug_gt_scene_{scene_id}_b{behavior_id}.pth')
torch.save(debug_log_pred, f'debug_pred_scene_{scene_id}_b{behavior_id}.pth')
end_time = world.world.get_snapshot().timestamp.elapsed_seconds
if end_time is None:
end_time = 0
ego_time_taken = ego_end_time - world.start_time
time_taken = end_time - world.start_time
time_taken = end_time - world.start_time
wp_traversed = np.array(world.wp_traversed)
trajectory_length = 0.
for m in range(wp_traversed.shape[0] - 1):
trajectory_length += np.linalg.norm(
[wp_traversed[m+1][0] - wp_traversed[m][0], wp_traversed[m+1][1] - wp_traversed[m][1]])
logs.append({'collision': int(
collision), 'time': time_taken, 'ego_time': ego_time_taken, 'distance': trajectory_length})
df = pd.DataFrame(
logs, columns=['collision', 'time', 'distance', 'ego_time'])
df.to_csv(csv_log_path, encoding='utf-8', index=False)
settings = world.world.get_settings()
settings.synchronous_mode = False
settings.no_rendering_mode = no_rendering
settings.fixed_delta_seconds = 0.1
world.world.apply_settings(settings)
if world is not None:
world.world.tick()
world.destroy()
# torch.save(all_trajs_data, "individual_trajs.pth")
print("TIME TAKEN: ", time.time() - exp_start)
settings = world.world.get_settings()
settings.synchronous_mode = False
settings.no_rendering_mode = no_rendering
settings.fixed_delta_seconds = 0.1
world.world.apply_settings(settings)
world.destroy()
# ==============================================================================
# -- main() --------------------------------------------------------------
# ==============================================================================
def main():
argparser = argparse.ArgumentParser(
description='CARLA Manual Control Client')
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--no-rendering',
action='store_true',
help='no rendering for server')
argparser.add_argument(
'--host',
metavar='H',
default='127.0.0.1',
help='IP of the host server (default: 127.0.0.1)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-s', '--scenarios',
metavar='S',
default=2000,
type=str,
help='scenarios to collect for')
argparser.add_argument(
'-n', '--num-agents',
default=2,
type=int,
help='Number of agents in a scenario')
argparser.add_argument(
'--num-exp',
default=20,
type=int,
help='Total number of experiments')
argparser.add_argument(
'--res',
metavar='WIDTHxHEIGHT',
default='1280x720',
help='window resolution (default: 1280x720)')
argparser.add_argument(
'-l', '--loop',
action='store_true',
dest='loop',
help='Sets a new random destination upon reaching the previous one (default: False)')
argparser.add_argument(
'--filter',
metavar='PATTERN',
default='vehicle.*',
help='actor filter (default: "vehicle.*")')
argparser.add_argument("-a", "--agent", type=str,
choices=["Roaming", "Basic"],
help="select which agent to run",
default="Basic")
argparser.add_argument('--num_agent', type=int, default=2)
argparser.add_argument('--seed', type=int, default=0)
argparser.add_argument('--beta', type=float, default=0.5)
argparser.add_argument(
'--use_winding', action='store_true', dest='use_winding')
argparser.add_argument('--gpu_index', type=int, default=0)
args = argparser.parse_args()
def test_arg_modifier(args, user_args):
args.CUDA_VISIBLE_DEVICES = -1
args.OMP_NUM_THREADS = 1
args.num_agent = user_args.num_agent
args.seed = user_args.seed
# args.model_type = user_args.model_type
args.beta = user_args.beta
if user_args.num_agent == 4:
args.bsize = 20
args.num_history = 5
args.num_rollout = 15
return args
args_pred = fetch_argument(partial(test_arg_modifier, user_args=args))
args_pred.bsize = 1
dc, lc, tc, model_dir = get_config_list(args_pred)
modes = ['test']
dataloader = {'test': get_trajectory_data_loader(
dc,
test=True,
batch_size=args_pred.bsize,
num_workers=args_pred.num_workers,
shuffle=True)}
run_every = {'test': 1}
gn_wrapper = fetch_model_iterator(lc, args_pred)
trainer = Trainer(gn_wrapper, modes, dataloader, run_every, tc)
trainer.model_wrapper.eval_mode()
args.width, args.height = [int(x) for x in args.res.split('x')]
base_path = "./logs_vmpc"
if not os.path.exists(base_path):
os.makedirs(base_path)
logs_path = os.path.join(
base_path, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
os.makedirs(logs_path)
# methods = ["vanilla_mpc", "ours"]
# generate_logs_directory(logs_path)
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
print(__doc__)
try:
# trainer = None
run_experiments_for_n_agents(args, trainer, args.num_agents, logs_path)
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')
if __name__ == '__main__':
main()