forked from CMU-TBD/Group_based_navigation_v1
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
80 lines (64 loc) · 2.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvAutoencoder(nn.Module):
def __init__(self):
super(ConvAutoencoder, self).__init__()
self.conv1 = nn.Conv3d(1, 64, 3, padding=1)
self.pool1 = nn.MaxPool3d((1,2,2), stride=(1,2,2))
self.conv2 = nn.Conv3d(64, 128, 3, padding=1)
#self.pool2 = nn.MaxPool3d(2, stride=2)
self.pool2 = nn.MaxPool3d((1,2,2), stride=(1,2,2))
self.conv3_1 = nn.Conv3d(128, 128, 3, padding=1)
self.conv3_2 = nn.Conv3d(128, 256, 3, padding=1)
#self.conv3 = nn.Conv3d(128, 256, 3, padding=1)
self.pool3 = nn.MaxPool3d(2, stride=2)
self.conv4_1 = nn.Conv3d(256, 256, 3, padding=1)
self.conv4_2 = nn.Conv3d(256, 512, 3, padding=1)
#self.conv4 = nn.Conv3d(256, 128, 3, padding=1)
self.pool4 = nn.MaxPool3d(2, stride=2)
self.conv5_1 = nn.Conv3d(512, 512, 3, padding=1)
self.conv5_2 = nn.Conv3d(512, 512, 3, padding=1)
#self.conv5 = nn.Conv3d(128, 64, 3, padding=1)
self.pool5 = nn.MaxPool3d(2, stride=2)
#self.t_conv1 = nn.ConvTranspose2d(128, 256, 2, stride=2)
#self.t_conv2 = nn.ConvTranspose2d(256, 256, 2, stride=2)
#self.t_conv3 = nn.ConvTranspose2d(256, 128, 2, stride=2)
#self.t_conv4 = nn.ConvTranspose2d(128, 64, 2, stride=2)
#self.t_conv5 = nn.ConvTranspose2d(64, 1, 2, stride=2)
self.t_conv1 = nn.ConvTranspose3d(512, 512, 2, stride=2)
self.t_conv2 = nn.ConvTranspose3d(512, 256, 2, stride=2)
self.t_conv3 = nn.ConvTranspose3d(256, 128, 2, stride=2)
self.t_conv4 = nn.ConvTranspose3d(128, 64, (1,2,2), stride=(1,2,2))
self.t_conv5 = nn.ConvTranspose3d(64, 1, (1,2,2), stride=(1,2,2))
self.conv6 = nn.Conv3d(512, 512, 3, padding=1)
self.conv7 = nn.Conv3d(256, 256, 3, padding=1)
self.conv8 = nn.Conv3d(128, 128, 3, padding=1)
return
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = F.relu(self.conv3_1(x))
x = F.relu(self.conv3_2(x))
#x = F.relu(self.conv3(x))
x = self.pool3(x)
x = F.relu(self.conv4_1(x))
x = F.relu(self.conv4_2(x))
#x = F.relu(self.conv4(x))
x = self.pool4(x)
x = F.relu(self.conv5_1(x))
x = F.relu(self.conv5_2(x))
#x = F.relu(self.conv5(x))
x = self.pool5(x)
#x = x[:, :, -1, :, :]
x = F.relu(self.t_conv1(x))
x = F.relu(self.conv6(x))
x = F.relu(self.t_conv2(x))
x = F.relu(self.conv7(x))
x = F.relu(self.t_conv3(x))
x = F.relu(self.conv8(x))
x = F.relu(self.t_conv4(x))
x = torch.sigmoid(self.t_conv5(x))
return x