forked from CMU-TBD/Group_based_navigation_v1
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrouping_helpers.py
86 lines (77 loc) · 3.21 KB
/
grouping_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.path import Path
import general_helpers as gh
def group_collisions(groups_vertices,cur_poses,thresh):
num_collisions = 0
for group_vertices in groups_vertices:
path_obj = Path(group_vertices)
occ_arr = path_obj.contains_points(cur_poses, radius=thresh)
occ_arr = 1*np.array(occ_arr)
num_collisions+=np.sum(occ_arr)
return num_collisions
def interpolate_between_group_vertices(vertices, step_size=0.1):
vertices.append(vertices[0])
ans = []
for i in range(np.shape(vertices)[0] - 1):
ans.append(gh.generate_straight_path(vertices[i],vertices[i+1],step_size)[0])
ret = np.concatenate(ans,axis=0)
return ret
def get_points_in_groups(group_vertices, grid_points):
path_obj = Path(group_vertices)
occ_grid = path_obj.contains_points(grid_points)
ans = []
for i in range(np.shape(occ_grid)[0]):
if(occ_grid[i] == True):
ans.append(grid_points[i])
return ans
def make_dict_pedidx2arridx(msg_obj,frame):
pedidx_to_arridx = {}
ped_idx = msg_obj.video_pedidx_matrix[frame]
for i in range(np.shape(ped_idx)[0]):
pedidx_to_arridx[ped_idx[i]] = i
return pedidx_to_arridx
def advance_group_once(vertices, dt, avg_vel):
for i in range(np.shape(vertices)[0]):
vertices[i][0] += avg_vel[0]*dt
vertices[i][1] += avg_vel[1]*dt
return vertices
def advance_group(tf, dt, avg_vel, group_vertices):
time_steps = int(tf/dt)
ans = [np.copy(group_vertices)]
curr = np.copy(group_vertices)
for i in range(time_steps):
next = advance_group_once(curr, dt, avg_vel)
ans.append(np.copy(next))
curr = next
return ans
def advance_groups(msg, frame, groups_vertices, groups_members, tf, dt):
pedidx_to_arridx = make_dict_pedidx2arridx(msg, frame)
ped_vels = msg.video_velocity_matrix[frame]
ans = []
for group_vertices, group_members in zip(groups_vertices, groups_members):
avg_vel = [0, 0]
for member in group_members:
avg_vel[0] += ped_vels[pedidx_to_arridx[member]][0]
avg_vel[1] += ped_vels[pedidx_to_arridx[member]][1]
avg_vel[0] /= np.shape(group_members)[0]
avg_vel[1] /= np.shape(group_members)[0]
curr = advance_group(tf, dt, avg_vel, group_vertices)
ans.append(curr)
return ans
def get_groups(gs_gen, group_ids, frame, edge_step_size):
group_ids_unique = list(set(group_ids))
groups_vertices=[]
groups_members=[]
for group_id in group_ids_unique:
raw_group_vertices, group_members = gs_gen.generate_group_shape(frame, group_id, None)
interpolated_group_vertices = interpolate_between_group_vertices(raw_group_vertices, step_size=edge_step_size)
groups_vertices.append(interpolated_group_vertices)
groups_members.append(group_members)
return groups_vertices, groups_members
def visualize_groups(groups_vertices, prediction=False):
if(prediction):
for groups_vertices_current in groups_vertices:
plt.scatter(group_vertices_current[:, 0], group_vertices_current[:, 1], s=1, c='k')
else:
plt.scatter(groups_vertices[:, 0], groups_vertices[:, 1], s=1, c='k')