-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutils.py
291 lines (238 loc) · 8.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import torch
import shutil
import numpy as np
import torch.nn.functional as F
import pickle
import os.path as osp
from PIL import Image
from scipy.io import wavfile
from torch.utils.data.dataloader import default_collate
from vad import read_wave, write_wave, frame_generator, vad_collector
def make_abs_path(d):
return osp.join(osp.dirname(osp.realpath(__file__)), d)
def _get_suffix(filename):
"""a.jpg -> jpg"""
pos = filename.rfind('.')
if pos == -1:
return ''
return filename[pos + 1:]
def _load(fp):
suffix = _get_suffix(fp)
if suffix == 'npy':
return np.load(fp)
elif suffix == 'pkl':
return pickle.load(open(fp, 'rb'))
def _load_tensor(fp, mode='cpu'):
if mode.lower() == 'cpu':
return torch.from_numpy(_load(fp))
elif mode.lower() == 'gpu':
return torch.from_numpy(_load(fp)).cuda()
def parse_param_102(param):
"""Work for only tensor"""
p_ = param[:, :12].reshape(-1, 3, 4)
p = p_[:, :, :3]
offset = p_[:, :, -1].reshape(-1, 3, 1)
alpha_shp = param[:, 12:52].reshape(-1, 40, 1)
alpha_exp = param[:, 52:62].reshape(-1, 10, 1)
alpha_tex = param[:, 62:102].reshape(-1, 40, 1)
return p, offset, alpha_shp, alpha_exp, alpha_tex
def to_rotation_mat_renorm(R):
s = (R[:, 0, :3].norm(dim=1) + R[:, 1, :3].norm(dim=1))/2.0
return F.normalize(R, p=2, dim=2), s
class ParamsPack():
"""3DMM configuration data loading from ./train.configs"""
def __init__(self, version):
data_ver = version
d = make_abs_path('./train.configs')
# PCA basis for shape, expression, texture
self.w_shp = _load_tensor(osp.join(d, 'w_shp_{}.npy'.format(data_ver)), mode='gpu')
self.w_exp = _load_tensor(osp.join(d, 'w_exp_{}.npy'.format(data_ver)), mode='gpu')
#self.w_tex = torch.from_numpy(_load(osp.join(d, 'w_tex_sim.npy'))[:,:40]).cuda()
# param_mean and param_std are used for re-whitening
meta = _load(osp.join(d, 'param_whitening_{}.pkl'.format(data_ver)))
self.param_mean = torch.from_numpy(meta.get('param_mean')).float().cuda()
self.param_std = torch.from_numpy(meta.get('param_std')).float().cuda()
# mean values
self.u_shp = _load_tensor(osp.join(d, 'u_shp.npy'), mode='gpu')
self.u_exp = _load_tensor(osp.join(d, 'u_exp.npy'), mode='gpu')
#self.u_tex = _load_tensor(osp.join(d, 'u_tex.npy'), mode='gpu')
self.u = self.u_shp + self.u_exp
self.w = torch.cat((self.w_shp, self.w_exp), dim=1)
# base vector for landmarks
self.std_size = 120
self.dim = self.w_shp.shape[0] // 3
param_pack = ParamsPack('v201')
class Meter(object):
# Computes and stores the average and current value
def __init__(self, name, display, fmt=':f'):
self.name = name
self.display = display
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name}:{' + self.display + self.fmt + '},'
return fmtstr.format(**self.__dict__)
def get_collate_fn(nframe_range):
def collate_fn(batch):
min_nframe, max_nframe = nframe_range
assert min_nframe <= max_nframe
num_frame = np.random.randint(min_nframe, max_nframe+1)
pt = np.random.randint(0, max_nframe-num_frame+1)
batch = [(item[0][..., pt:pt+num_frame], item[1])
for item in batch]
return default_collate(batch)
return collate_fn
def get_collate_fn_4(nframe_range):
def collate_fn(batch):
min_nframe, max_nframe = nframe_range
assert min_nframe <= max_nframe
num_frame = np.random.randint(min_nframe, max_nframe+1)
pt = np.random.randint(0, max_nframe-num_frame+1)
batch = [(item[0][..., pt:pt+num_frame], item[1], item[2][..., pt:pt+num_frame], item[3][..., pt:pt+num_frame]) for item in batch]
return default_collate(batch)
return collate_fn
def cycle(dataloader):
while True:
for data, label in dataloader:
yield data, label
def cycle_4(dataloader):
while True:
for data, label, data_p, data_n in dataloader:
yield data, label, data_p, data_n
def save_model(net, model_path):
model_dir = os.path.dirname(model_path)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
torch.save(net.state_dict(), model_path)
def rm_sil(voice_file, vad_obj):
"""
This code snippet is basically taken from the repository
'https://github.com/wiseman/py-webrtcvad'
It removes the silence clips in a speech recording
"""
audio, sample_rate = read_wave(voice_file)
frames = frame_generator(20, audio, sample_rate)
frames = list(frames)
segments = vad_collector(sample_rate, 20, 50, vad_obj, frames)
if os.path.exists('tmp/'):
shutil.rmtree('tmp/')
os.makedirs('tmp/')
wave_data = []
for i, segment in enumerate(segments):
segment_file = 'tmp/' + str(i) + '.wav'
write_wave(segment_file, segment, sample_rate)
wave_data.append(wavfile.read(segment_file)[1])
shutil.rmtree('tmp/')
if wave_data:
vad_voice = np.concatenate(wave_data).astype('int16')
return vad_voice
def get_fbank(voice, mfc_obj):
# Extract log mel-spectrogra
fbank = mfc_obj.sig2logspec(voice).astype('float32')
# print(fbank.shape)
# m=fbank.mean(axis=0)
# print(m.shape)
# exit()
# Mean and variance normalization of each mel-frequency
fbank = fbank - fbank.mean(axis=0)
fbank = fbank / (fbank.std(axis=0)+np.finfo(np.float32).eps)
# If the duration of a voice recording is less than 10 seconds (1000 frames),
# repeat the recording until it is longer than 10 seconds and crop.
full_frame_number = 1000
init_frame_number = fbank.shape[0]
while fbank.shape[0] < full_frame_number:
fbank = np.append(fbank, fbank[0:init_frame_number], axis=0)
fbank = fbank[0:full_frame_number,:]
return fbank
def voice2face(e_net, g_net, voice_file, vad_obj, mfc_obj, GPU=True):
vad_voice = rm_sil(voice_file, vad_obj)
fbank = get_fbank(vad_voice, mfc_obj)
fbank = fbank.T[np.newaxis, ...]
fbank = torch.from_numpy(fbank.astype('float32'))
if GPU:
fbank = fbank.cuda()
embedding = e_net(fbank)
embedding = F.normalize(embedding)
face = g_net(embedding)
return face
def voice2face_processed(e_net, g_net, fbank_obj, GPU=True, return_embeddings=False):
fbank = np.load(fbank_obj)
fbank = fbank.T[np.newaxis, ...]
fbank = torch.from_numpy(fbank.astype('float32'))
if GPU:
fbank = fbank.cuda()
embedding = e_net(fbank)
embedding = F.normalize(embedding)
face = g_net(embedding)
if return_embeddings:
return face, embedding
return face
def voice2face_processed_ParamOut(e_net, g_net, fbank_obj, GPU=True):
fbank = np.load(fbank_obj)
fbank = fbank.T[np.newaxis, ...]
fbank = torch.from_numpy(fbank.astype('float32'))
if GPU:
fbank = fbank.cuda()
embedding = e_net(fbank)
embedding = F.normalize(embedding)
face = g_net.forward_test(embedding)
return face
def voice2face_processed_MeshOut(e_net, g_net, fbank_obj, GPU=True):
fbank = np.load(fbank_obj)
fbank = fbank.T[np.newaxis, ...]
fbank = torch.from_numpy(fbank.astype('float32'))
if GPU:
fbank = fbank.cuda()
embedding = e_net(fbank)
embedding = F.normalize(embedding)
face = g_net.forward_test(embedding)
return face
def write_obj_with_colors(obj_name, vertices, triangles):
"""
write out obj mesh files.
"""
if obj_name.split('.')[-1] != 'obj':
obj_name = obj_name + '.obj'
# write obj
with open(obj_name, 'w') as f:
# write vertices & colors
for i in range(vertices.shape[1]):
s = 'v {} {} {}\n'.format(vertices[0, i], vertices[1, i], vertices[2, i])
f.write(s)
# write f: ver ind/ uv ind
for i in range(triangles.shape[1]):
s = 'f {} {} {}\n'.format(triangles[0, i], triangles[1, i], triangles[2, i])
f.write(s)
def read_obj(filename):
f = open(filename)
lines = f.readlines()
coll = []
for l in lines:
if l[0] != 'v':
break
comp = l.split()[1:]
comp = list(map(float, comp))
coll.append(comp)
a = np.asarray(coll)
return a
def read_xyz(filename):
f = open(filename)
lines = f.readlines()
coll = []
for l in lines:
comp = l.split()
comp = list(map(float, comp))
coll.append(comp)
a=np.asarray(coll)
return a