-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFobos.py
executable file
·214 lines (165 loc) · 7.08 KB
/
Fobos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import numpy as np
from datetime import datetime
from sklearn.base import BaseEstimator
class FOBOS (BaseEstimator):
'''
FOBOS composite mirror descent
The implementation of the FOBOS algorithm has been inspired from formulas present
in the slides:
https://stanford.edu/~jduchi/projects/DuchiSi09c_slides.pdf
and the paper:
https://stanford.edu/~jduchi/projects/DuchiSi09c.pdf
At each timestamp t, we observe the couple (x_t, y_t)
Arguments
*********
scalable: if True, then it will try to do a smart update for the coefficients
dimension: dimension of the observed variables + 1 (for bias)
loss: either 'least_squares' (for regression) or 'logloss' (for classification)
initial_step: the initial learning rate used for the descent. This parameter
has a huge impact on performance of the algorithm and must be
tuned efficiently.
lamda1: regularization coefficient for the l1 penalty (only used when
regularization = 'l1' or 'elasticNet')
lamda2: regularization coefficient for the l2 penalty (only used when
regularization = 'l2' or 'elasticNet')
regularization: either 'l1' or 'l2' or 'elasticNet'
initialization: coefficient vector initialization. It's either 'zeros' or 'random'
with_log: boolean to keep a trace of coefficients and gradient norms or not when
fitting data.
Note
****
In the case of linear regression, the least_squares loss is chosen, and therefore,
we're minimizing this loss at each iteration:
loss(x_t, y_t) = 0.5*(<x_t,w_t> - y_t)^2
(with <a,b> denotes the dot product between vectors a and b)
The gradient of this loss with respect to the coefficients vector w_t is:
grad_lsloss(x_t, y_t) = x_t*(<x_t,w_t> - y_t)
The prediction function in this case is:
pred(x_t) = <w_t, x_t>
In the case of logistic regression, the logloss is chosen and we'll minimize instead
this loss:
loss(x_t, y_t) = log(1 + exp(-y_t.<x_t, w_t>))
Its gradient with respect to w_t:
grad_logloss(x_t, y_t) = 1/(1+ exp(y_t<x_t, w_t>))
PS: y_t in the classification case needs to be -1 or +1, therefore corresponding
mapping between -1 and 0 has been done in the case the class value which is
fitted is 0 instead of -1. A reverse mapping also has been done for prediction.
'''
def __init__(self, scalable=False, loss='least_squares', initial_step=.1, lamda1= 1e-3,
lamda2=1e-3, regularization='l1', initialization='zeros', with_log=False):
self.yflag = False
self.t = 0 #number of learned points
self.regularization = regularization
self.lamda1 = lamda1
self.lamda2 = lamda2
self.initial_step = initial_step
self.learning_rate = initial_step
self.p = -1
self.initialization = initialization
self.loss = loss
self.soft_thresholding = np.vectorize(self.soft_thresholding_scalar)
if loss == 'least_squares':
self.pred = self.predict_regression
self.grad = self.gradient_lse
elif loss == 'logloss':
self.pred = self.predict_classif
self.grad = self.gradient_logreg
self.with_log = with_log
self.scalable = scalable
self.J = set()
if with_log:
self.gradlog = []
self.wlog = []
self.probas = []
def reshape_x(self, x_t):
x_t = np.concatenate([x_t,np.ones(1)])
return x_t
def initialize(self):
if self.initialization == 'zeros':
self.w = np.zeros(self.p)
else:
self.w = np.random.randn(self.p)
def fit(self, x_t, y_t):
if self.p == -1:
if self.scalable:
b = 0
else:
b = 1 #We add one coefficient for bias
if np.ndim(x_t) == 1:
self.p = np.shape(x_t)[0] + b
else:
self.p = np.shape(x_t)[1] + b
self.initialize()
if self.with_log:
if not self.scalable:
self.wlog.append(self.w)
if self.loss == 'logloss':
self.probas.append(self.predict_proba(x_t))
if not self.scalable:
x_t = self.reshape_x(x_t)
self.t += 1
self.learning_rate = self.initial_step / np.sqrt(self.t)
if self.scalable:
lbda_eta = self.lamda1 * self.learning_rate
I = set(x_t.nonzero()[0])
dp = x_t.dot(self.w)
Jprime = set()
for j in self.J - I:
diff = np.abs(self.w[j]) - lbda_eta
if diff > 0:
self.w[j] = np.sign(self.w[j]) * diff
Jprime.add(j)
for i in I:
aux = self.w[i] + self.learning_rate * y_t * x_t[i] / (1 + np.exp(y_t * dp))
diff = np.abs(aux) - lbda_eta
if diff > 0 :
self.w[i] = np.sign(aux) * diff
Jprime.add(i)
else:
self.w[i] = 0
if i in Jprime:
Jprime.remove(i)
self.J = Jprime
else:
w_thalf = self.w - self.learning_rate * self.grad(x_t, y_t)
if self.regularization == 'l1':
self.w = self.soft_thresholding(w_thalf, self.lamda1*self.learning_rate)
elif self.regularization == 'l2':
self.w = w_thalf/(1 + self.lamda2*self.learning_rate)
elif self.regularization == 'elasticNet':
self.w = self.soft_thresholding(w_thalf, self.lamda1*self.learning_rate) / (1 + self.lamda2*self.learning_rate)
def predict(self, x_t):
if not self.scalable:
x_t = self.reshape_x(x_t)
return pred(x_t)
def soft_thresholding_scalar(self, x, lamda):
return np.sign(x) * np.maximum(0, np.abs(x) - lamda)
def gradient_lse(self, x_t, y_t):
grd = x_t * (x_t.dot(self.w) - y_t)
if self.with_log:
self.gradlog.append(np.linalg.norm(grd))
return grd
def gradient_logreg(self, x_t, y_t):
if y_t == 0:
y_t = -1
self.yflag = True
exp = np.exp(y_t * x_t.dot(self.w))
grd = -y_t * x_t / (1+exp)
if self.with_log:
self.gradlog.append(np.linalg.norm(grd))
return grd
def predict_regression(self, x_t):
return self.w.dot(x_t)
def sigmoid(self, b):
return 1./ (1 + np.exp(-b))
def predict_proba(self, x_t):
#only in case of classification:
if self.loss == 'logloss':
return self.sigmoid(x_t.dot(self.w))
else:
return None
def predict_classif(self, x_t):
y = np.sign(predict_regression(x_t))
if self.yflag and (y + 1) < 1e-10:
y = 0
return y