From 87f4b94ffed5d9e1b0bc90edadd0ef9105a3e5b2 Mon Sep 17 00:00:00 2001 From: Bulhwi Cha Date: Mon, 14 Oct 2024 18:09:40 +0900 Subject: [PATCH] feat: add more lemmas about lists These are 'leftover' lemmas I created while trying to prove `String.splitOn_of_valid`. See https://github.com/leanprover-community/batteries/pull/743. --- Batteries/Data/List/Lemmas.lean | 26 ++++++++++++++++++++++++++ 1 file changed, 26 insertions(+) diff --git a/Batteries/Data/List/Lemmas.lean b/Batteries/Data/List/Lemmas.lean index 0ed5bf978d..c14cbd440e 100644 --- a/Batteries/Data/List/Lemmas.lean +++ b/Batteries/Data/List/Lemmas.lean @@ -24,6 +24,10 @@ namespace List theorem head_cons_tail : ∀ l h, @head α l h :: l.tail = l | _::_, _ => rfl +theorem singleton_head_eq_self (l : List α) (hne : l ≠ []) (htl : l.tail = []) : + [l.head hne] = l := by + conv => rhs; rw [← head_cons_tail l hne, htl] + /-! ### next? -/ @[simp] theorem next?_nil : @next? α [] = none := rfl @@ -489,10 +493,32 @@ end Diff /-! ### prefix, suffix, infix -/ +theorem singleton_prefix_cons (a) : [a] <+: a :: l := + (prefix_cons_inj a).mpr nil_prefix + theorem ne_nil_of_not_prefix (h : ¬l₁ <+: l₂) : l₁ ≠ [] := by intro heq simp [heq, nil_prefix] at h +theorem not_prefix_and_not_prefix_symm_iff_exists [BEq α] [LawfulBEq α] [DecidableEq α] + {l₁ l₂ : List α} : ¬l₁ <+: l₂ ∧ ¬l₂ <+: l₁ ↔ ∃ c₁ c₂ pre suf₁ suf₂, c₁ ≠ c₂ ∧ + l₁ = pre ++ c₁ :: suf₁ ∧ l₂ = pre ++ c₂ :: suf₂ := by + constructor <;> intro h + · obtain ⟨c₁, l₁, rfl⟩ := l₁.exists_cons_of_ne_nil (ne_nil_of_not_prefix h.1) + obtain ⟨c₂, l₂, rfl⟩ := l₂.exists_cons_of_ne_nil (ne_nil_of_not_prefix h.2) + simp only [cons_prefix_cons, not_and] at h + cases Decidable.em (c₁ = c₂) + · subst c₂ + simp only [forall_const] at h + let ⟨c₁', c₂', pre, suf₁, suf₂, hc, heq₁, heq₂⟩ := + not_prefix_and_not_prefix_symm_iff_exists.mp h + exact ⟨c₁', c₂', c₁::pre, suf₁, suf₂, hc, by simp [heq₁], by simp [heq₂]⟩ + · next hc => + exact ⟨c₁, c₂, [], l₁, l₂, hc, nil_append .., nil_append ..⟩ + · let ⟨c₁, c₂, pre, suf₁, suf₂, hc, heq₁, heq₂⟩ := h + rw [heq₁, heq₂] + simp [prefix_append_right_inj, cons_prefix_cons, hc, hc.symm] + /-! ### drop -/ theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)