-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathet --hard HEAD^
220 lines (220 loc) · 9.39 KB
/
et --hard HEAD^
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
[33me666daf[m dataset
[33m50da0ec[m en_Content-Based Recommender Systems.txt
[33m7362c77[m Comme back to recommended
[33mad28b25[m Finding the recommendation
[33mb208dc8[m Candidate movies for recommendation
[33m1268377[m Weighing the genres
[33mb072124[m Content-based recommender systems
[33m167ca13[m en_Intro to Recommender Systems.txt
[33mdcd0311[m Implementing recommender systems
[33m89fe206[m Two types of recommender systems
[33m47b81ef[m Advantage of recommender systems
[33m93c275f[m Applications
[33med3eb85[m What are recommender systems ?
[33m6e3dbb6[m Learning Objectives
[33m36e1a83[m exams 4 PNG
[33m521d474[m dataset weather-stations20140101-20141231
[33mfcc85e0[m en_DBSCAN Clustering
[33m7866f6e[m Adventage of DBSCAN
[33mc128df1[m DBSCAN algorithm - clusters ?
[33m5dbe439[m DBSCAN algorithm - outliers ?
[33mb038d4c[m DBSCAN algorithm - border point ?
[33mf4b8a69[m DBSCAN algorithm - core point ?
[33mcbc7589[m How DBSCAN works
[33mecd690e[m WHat is DBSCAN ?
[33m29dc068[m DBSCAN for class identification
[33m296a6b8[m K-means vs. density-based clustering'
[33m069aa92[m Density-based clustering
[33m4dc32ff[m hierarchical clustering model
[33mb5cc0aa[m dataset of hierachical algorithm
[33m9b3817d[m en_More on Hierarchical Clustering
[33m85ef8de[m Hierarchical clustering vs. K-means
[33m22bc6fa[m Adventages vs. disadventages
[33m156d43b[m Distance between clusters
[33m36c6745[m How can calculate Distance
[33m8e1da03[m Similarity / Distance
[33m1b88075[m Agglomerative algorithm
[33m5d5d7fa[m en_Hierarchical Clustering
[33m02c954e[m Hierarchical clustering
[33m77b4ac0[m Agglomerative clustering
[33m50c98b0[m Hierarchical clustering
[33m4f3b10d[m lab k-means
[33m28f1912[m Cust_Segmentation dataset
[33mb5dd0df[m en_More on K-Means
[33m27f7448[m K-Means recap
[33m0daa9d3[m Choosing k
[33m2b65654[m K-Means accuracy
[33mcd07f38[m K-Means clustering algorithm
[33mde74ce2[m en_K-Means Clustering
[33mf68195e[m K-Means clustering - repeat
[33md9df602[m K-Means clustering - compute new centroids
[33m266ca9e[m K-Means clustering - asign to centroid
[33m5a9e490[m K-Means clustering - calculate the distance
[33m8dfd73c[m K-Means clustering - initialize K
[33m97b3012[m How does K-means clustering work ?
[33m0b882ad[m Multi-dimensional similarity / distance
[33m3ea5290[m 2-dimensional similarity / distance
[33md7af4e5[m 1-dimensional similarity / distance
[33m0611c21[m Determine the simalarity or dissimilarity
[33m4146f5d[m K-means algorithms
[33m8675287[m What is K-means clustering ?
[33m592e47b[m en_Intro to Clustering
[33mecc6089[m Clustering algorithms
[33m40d54cc[m Why clustering ?
[33m19e72bc[m Clustering application
[33m23f1430[m Clustering vs classification
[33m0aa8ee6[m What is clustering ?
[33m311eb09[m Clustering for segmentation
[33m4cbf033[m Module 4 - Learning Objectives
[33mf254820[m lab SVM
[33m7c0d98a[m dataset svm
[33m152d88d[m en_Support Vector Machine (SVM)
[33m24a524b[m SVM applications
[33mcf3efe3[m Pros and const of SVM
[33m56cada3[m Using SVM to find the hyperplane
[33ma107b0d[m Data transformation
[33m683a25c[m What is SVM ?
[33mba67a1c[m Classification with SVM
[33m268c357[m lab
[33mf39af4a[m Training algorithm recap
[33me6edf1b[m Using gradient descent to minimizing the cost
[33mb48bcbd[m Minimizing the cost function of the model
[33mca15971[m Logistic regression cost function
[33ma522870[m Plotting cost function of the model
[33mb5cb282[m General cost function
[33m2e1e265[m Logistic Regression vs Linear Regression
[33md37124a[m The training process
[33m812179e[m Clarification customer churn model
[33ma05f559[m The problem with using linear regression
[33mfba4655[m Linear regression classification problems ?
[33m437ffb7[m Predicting churn using linear regression
[33m10bf03b[m Predicting customer income
[33md7b156c[m en_Intro to Logistic Regression
[33m642c23f[m Building a model for customer churn
[33m4684c31[m When is logistic regression suitables ?
[33m96a5ff7[m Logistic regression applications
[33mc2f51f9[m What is logistic regression ?
[33mfe3bd29[m labo decision tree
[33m080375a[m dataset
[33m96f243b[m Building Decision Trees
[33m411cd7f[m Correct way to build a decision tree
[33mfec0e8e[m Calculating information
[33m8fe4d60[m What is information gain ?
[33m431bac9[m Which attribute is the best ?
[33m60e6c5b[m What about 'Sexe' ?
[33mbffd79f[m Is 'Cholesterol' the best attribute ?
[33m7468586[m With attribute is the best one to use ?
[33m3537598[m Entropy
[33ma2db01e[m Which attribute is the best attribute ?
[33m2c318fc[m How to build decision tree
[33m9cc278a[m en_Intro to Decision Trees
[33m720e74c[m Decision tree learning algorithm
[33m6bf5b15[m Building a decision tree with the training set
[33m2d225ed[m What is decision tree ?
[33mca65277[m lab module 3
[33m198fe54[m dataset teleCust1000t
[33meeae08a[m en_Evaluation Metrics in Classification
[33m941915b[m Log Loss
[33m73c97ba[m F1-score
[33mc6b5d97[m Jaccard index
[33m3466ecb[m Classification accuracy
[33m249f976[m en_K-Nearest Neighbors
[33m9de6705[m Computing continuous target using KNN
[33m54198b8[m What is the best value of K for KNN ?
[33m3d12680[m multi-dimensional space
[33mdff3faa[m 1 -dimensional space
[33mf668bbc[m The K-Nearest Neighbors algorithm
[33m729d6b3[m What is K-Nearest Neighbor ( or KNN ) ?
[33m427136f[m Determining the class unsing 5 KNNs
[33m5adcf5d[m Determining the class unsing 1st KNN
[33m42a0b43[m Intro to KNN
[33m8ab360c[m en_Intro to Classification
[33m39c4681[m Classification algorithms in machine learning
[33mc6897a2[m Classification applications
[33m95642d4[m Classification use cases
[33m5b87669[m Example of multi-class classification
[33m3d680fe[m How does classification work ?
[33m611a135[m What is classification ?
[33m28a9f35[m Learning Objectives
[33m0209858[m exams 2 PDF
[33madd4ec6[m exams 2
[33m4f4ab15[m lab 3
[33maaaf77e[m dataset lab 3
[33mf216c6a[m Non-Linear Regression
[33ma2b876d[m Linear vs non-linear regression
[33me611195[m What is non-polynomial regression ?
[33mdcd7032[m What is polynomial regression ?
[33me052f08[m Different types of regression
[33m58bae3b[m Should we use linear regression ?
[33m5b0d5c9[m en_Evaluation Metrics in Regression Models
[33mc8ac73e[m What is an error of the model ?
[33mf2ece35[m Regression accuracy
[33m40268ef[m en_Model Evaluation in Regression Models
[33m7208ca3[m How to use K-fold cross-validation ?
[33m18d04c6[m Train/Test split evaluation approch
[33m7edc812[m What is training & out-of-sample accuracy ?
[33m10cbe3e[m Train and test on the same dataset
[33ma842a08[m Calculating the accuracy of a model
[33m3609484[m Best approach for most accurate result ?
[33m66488b4[m Model evaluation approaches
[33mb6c7a7a[m en_Multiple Linear Regression
[33m8841790[m A&A - on multiple linear regression
[33m0c17ce5[m Making prediction with multiple linear regression
[33md385213[m Estimating multiple linear regression parameters
[33m382647f[m Using MSE to expose the errors in the model
[33mc56953a[m Predicting continuous values with multiple linear regression
[33m98d47cc[m Examples of multiple linear regression
[33m78a64dc[m Lab2 file python
[33md77589d[m original dataset
[33ma0e0c11[m dataset 2
[33m3a62025[m dataset 1
[33m0acb287[m en_Simple Linear Regression
[33mf227527[m Pros of linear regression
[33m0e9519c[m Predictions with linear regression
[33mbc1b902[m Estimating the parameters
[33maab2830[m How to find the best fit ?
[33m342e944[m Linear regression model representation
[33m258dd76[m How does linear regression works ?
[33m5859450[m Linear regression topology
[33m581d536[m Using linear regression to predict continuous values
[33mb8ff17c[m Introduction to Regression
[33me918744[m Application of regression
[33m36f0494[m Application of regression
[33mb6fd78b[m Types of regression
[33m4f26097[m What is a regression model ?
[33m39b293d[m What is regression ?
[33mbf634d4[m Learning Objectives
[33m3dcd73c[m exams module 1
[33m09c6346[m Supervised vs Unsupervised
[33m69b824b[m Supervised vs unsupervised learning
[33mdca26d7[m What is clustering ?
[33m14c2b0c[m What is unsupervised learning
[33mb498cf1[m What is regression ?
[33m88eb818[m What is classification ?
[33m4e7691f[m Type of supervised learning
[33mf877c8e[m Teaching the model with labeled data
[33mdac6089[m What is supervised learning
[33m4c3423a[m Python for Machine Learning
[33m2c87e26[m Scikit-learn functions
[33m3e504b7[m More about scikit-learn
[33m3c255e8[m Python libraries for machine learning
[33m4e74fe3[m intro ML
[33m2ce1ac9[m intro ML
[33m812658d[m let's started ml
[33m5e4e8a5[m difference between ai, ml and deep learning
[33m93dda22[m Major machine learning techniques
[33mabc3926[m Examples of machine learning
[33mf525bd3[m How machine learning works ?
[33m26f0337[m What is machine learning
[33m90a1676[m Learning Objectives
[33m77eaaf5[m Final Exam
[33m8628b48[m Module 5 - Recommender Systems
[33m5b38937[m Module 4 - Clustering
[33m4dfb00b[m Module 3 - Classification
[33mc8a0fcc[m Module 2 - Regression
[33m6ac0366[m Module 1 - Machine Learning
[33m2855658[m les algorithmes
[33m618382a[m Learning Objectives
[33mf3cfa46[m welcome
[33m89cdaba[m welcome
[33mc3fe49c[m Initial commit