-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain_mlp.py
420 lines (392 loc) · 13.9 KB
/
main_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import numpy as np
import torch
import argparse
import losses
import spaces
import disentanglement_utils
import invertible_network_utils
import torch.nn.functional as F
import random
import os
import latent_spaces
import encoders
use_cuda = torch.cuda.is_available()
if use_cuda:
device = "cuda"
else:
device = "cpu"
def parse_args():
parser = argparse.ArgumentParser(
description="Disentanglement with InfoNCE/Contrastive Learning - MLP Mixing"
)
parser.add_argument("--sphere-r", type=float, default=1.0)
parser.add_argument(
"--box-min",
type=float,
default=0.0,
help="For box normalization only. Minimal value of box.",
)
parser.add_argument(
"--box-max",
type=float,
default=1.0,
help="For box normalization only. Maximal value of box.",
)
parser.add_argument(
"--sphere-norm", action="store_true", help="Normalize output to a sphere."
)
parser.add_argument(
"--box-norm", action="store_true", help="Normalize output to a box."
)
parser.add_argument(
"--only-supervised", action="store_true", help="Only train supervised model."
)
parser.add_argument(
"--only-unsupervised",
action="store_true",
help="Only train unsupervised model.",
)
parser.add_argument(
"--more-unsupervised",
type=int,
default=3,
help="How many more steps to do for unsupervised compared to supervised training.",
)
parser.add_argument("--save-dir", type=str, default="")
parser.add_argument(
"--num-eval-batches",
type=int,
default=10,
help="Number of batches to average evaluation performance at the end.",
)
parser.add_argument("--seed", type=int, default=None)
parser.add_argument(
"--act-fct",
type=str,
default="leaky_relu",
help="Activation function in mixing network g.",
)
parser.add_argument(
"--c-param",
type=float,
default=0.05,
help="Concentration parameter of the conditional distribution.",
)
parser.add_argument(
"--m-param",
type=float,
default=1.0,
help="Additional parameter for the marginal (only relevant if it is not uniform).",
)
parser.add_argument("--tau", type=float, default=1.0)
parser.add_argument(
"--n-mixing-layer",
type=int,
default=3,
help="Number of layers in nonlinear mixing network g.",
)
parser.add_argument(
"--n", type=int, default=10, help="Dimensionality of the latents."
)
parser.add_argument(
"--space-type", type=str, default="box", choices=("box", "sphere", "unbounded")
)
parser.add_argument(
"--m-p",
type=int,
default=0,
help="Type of ground-truth marginal distribution. p=0 means uniform; "
"all other p values correspond to (projected) Lp Exponential",
)
parser.add_argument(
"--c-p",
type=int,
default=2,
help="Exponent of ground-truth Lp Exponential distribution.",
)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument(
"--p",
type=int,
default=2,
help="Exponent of the assumed model Lp Exponential distribution.",
)
parser.add_argument("--batch-size", type=int, default=6144)
parser.add_argument("--n-log-steps", type=int, default=250)
parser.add_argument("--n-steps", type=int, default=100001)
parser.add_argument("--resume-training", action="store_true")
args = parser.parse_args()
print("Arguments:")
for k, v in vars(args).items():
print(f"\t{k}: {v}")
return args
def main():
args = parse_args()
if args.seed is not None:
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
if args.space_type == "box":
space = spaces.NBoxSpace(args.n, args.box_min, args.box_max)
elif args.space_type == "sphere":
space = spaces.NSphereSpace(args.n, args.sphere_r)
else:
space = spaces.NRealSpace(args.n)
if args.p:
loss = losses.LpSimCLRLoss(
p=args.p, tau=args.tau, simclr_compatibility_mode=True
)
else:
loss = losses.SimCLRLoss(normalize=False, tau=args.tau)
eta = torch.zeros(args.n)
if args.space_type == "sphere":
eta[0] = 1.0
if args.m_p:
if args.m_p == 1:
sample_marginal = lambda space, size, device=device: space.laplace(
eta, args.m_param, size, device
)
elif args.m_p == 2:
sample_marginal = lambda space, size, device=device: space.normal(
eta, args.m_param, size, device
)
else:
sample_marginal = (
lambda space, size, device=device: space.generalized_normal(
eta, args.m_param, p=args.m_p, size=size, device=device
)
)
else:
sample_marginal = lambda space, size, device=device: space.uniform(
size, device=device
)
if args.c_p:
if args.c_p == 1:
sample_conditional = lambda space, z, size, device=device: space.laplace(
z, args.c_param, size, device
)
elif args.c_p == 2:
sample_conditional = lambda space, z, size, device=device: space.normal(
z, args.c_param, size, device
)
else:
sample_conditional = (
lambda space, z, size, device=device: space.generalized_normal(
z, args.c_param, p=args.c_p, size=size, device=device
)
)
else:
sample_conditional = (
lambda space, z, size, device=device: space.von_mises_fisher(
z, args.c_param, size, device)
)
latent_space = latent_spaces.LatentSpace(
space=space,
sample_marginal=sample_marginal,
sample_conditional=sample_conditional,
)
def sample_marginal_and_conditional(size, device=device):
z = latent_space.sample_marginal(size=size, device=device)
z_tilde = latent_space.sample_conditional(z, size=size, device=device)
return z, z_tilde
g = invertible_network_utils.construct_invertible_mlp(
n=args.n,
n_layers=args.n_mixing_layer,
act_fct=args.act_fct,
cond_thresh_ratio=0.0,
n_iter_cond_thresh=25000,
)
g = g.to(device)
for p in g.parameters():
p.requires_grad = False
h_ind = lambda z: g(z)
z_disentanglement = latent_space.sample_marginal(4096)
(linear_disentanglement_score, _), _ = disentanglement_utils.linear_disentanglement(
z_disentanglement, h_ind(z_disentanglement), mode="r2"
)
print(f"Id. Lin. Disentanglement: {linear_disentanglement_score:.4f}")
(
permutation_disentanglement_score,
_,
), _ = disentanglement_utils.permutation_disentanglement(
z_disentanglement,
h_ind(z_disentanglement),
mode="pearson",
solver="munkres",
rescaling=True,
)
print(f"Id. Perm. Disentanglement: {permutation_disentanglement_score:.4f}")
def unpack_item_list(lst):
if isinstance(lst, tuple):
lst = list(lst)
result_list = []
for it in lst:
if isinstance(it, (tuple, list)):
result_list.append(unpack_item_list(it))
else:
result_list.append(it.item())
return result_list
if args.save_dir:
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
torch.save(g.state_dict(), os.path.join(args.save_dir, "g.pth"))
if args.only_unsupervised:
test_list = [False]
elif args.only_supervised:
test_list = [True]
else:
test_list = [True, False]
for test in test_list:
print("supervised test: {}".format(test))
def train_step(data, loss, optimizer):
z1, z2_con_z1 = data
z1 = z1.to(device)
z2_con_z1 = z2_con_z1.to(device)
# create random "negative" pairs
# this is faster than sampling z3 again from the marginal distribution
# and should also yield samples as if they were sampled from the marginal
z3 = torch.roll(z1, 1, 0)
optimizer.zero_grad()
z1_rec = h(z1)
z2_con_z1_rec = h(z2_con_z1)
z3_rec = torch.roll(z1_rec, 1, 0)
if test:
total_loss_value = F.mse_loss(z1_rec, z1)
losses_value = [total_loss_value]
else:
total_loss_value, _, losses_value = loss(
z1, z2_con_z1, z3, z1_rec, z2_con_z1_rec, z3_rec
)
total_loss_value.backward()
optimizer.step()
return total_loss_value.item(), unpack_item_list(losses_value)
output_normalization = None
if args.box_norm:
output_normalization = "learnable_box"
elif args.sphere_norm:
output_normalization = "learnable_sphere"
else:
if args.p == 0:
output_normalization = "fixed_sphere"
else:
output_normalization = None
f = encoders.get_mlp(
n_in=args.n,
n_out=args.n,
layers=[
args.n * 10,
args.n * 50,
args.n * 50,
args.n * 50,
args.n * 50,
args.n * 10,
],
output_normalization=output_normalization,
)
f = f.to(device)
print("f: ", f)
optimizer = torch.optim.Adam(f.parameters(), lr=args.lr)
h = lambda z: f(g(z))
if (
"total_loss_values" in locals() and not args.resume_training
) or "total_loss_values" not in locals():
individual_losses_values = []
total_loss_values = []
linear_disentanglement_scores = []
permutation_disentanglement_scores = []
global_step = len(total_loss_values) + 1
while (
global_step <= args.n_steps
if test
else global_step <= (args.n_steps * args.more_unsupervised)
):
data = sample_marginal_and_conditional(size=args.batch_size)
total_loss_value, losses_value = train_step(
data, loss=loss, optimizer=optimizer
)
total_loss_values.append(total_loss_value)
individual_losses_values.append(losses_value)
if global_step % args.n_log_steps == 1 or global_step == args.n_steps:
z_disentanglement = latent_space.sample_marginal(4096)
(
linear_disentanglement_score,
_,
), _ = disentanglement_utils.linear_disentanglement(
z_disentanglement, h(z_disentanglement), mode="r2"
)
linear_disentanglement_scores.append(linear_disentanglement_score)
(
permutation_disentanglement_score,
_,
), _ = disentanglement_utils.permutation_disentanglement(
z_disentanglement,
h(z_disentanglement),
mode="pearson",
solver="munkres",
rescaling=True,
)
permutation_disentanglement_scores.append(
permutation_disentanglement_score
)
else:
linear_disentanglement_scores.append(linear_disentanglement_scores[-1])
permutation_disentanglement_scores.append(
permutation_disentanglement_scores[-1]
)
if global_step % args.n_log_steps == 1 or global_step == args.n_steps:
print(
f"Step: {global_step} \t",
f"Loss: {total_loss_value:.4f} \t",
f"<Loss>: {np.mean(np.array(total_loss_values[-args.n_log_steps:])):.4f} \t",
f"Lin. Disentanglement: {linear_disentanglement_score:.4f} \t",
f"Perm. Disentanglement: {permutation_disentanglement_score:.4f}",
)
if args.sphere_norm:
print(f"r: {f[-1].r}")
global_step += 1
if args.save_dir:
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
torch.save(
f.state_dict(),
os.path.join(
args.save_dir, "{}_f.pth".format("sup" if test else "unsup")
),
)
torch.cuda.empty_cache()
final_linear_scores = []
final_perm_scores = []
with torch.no_grad():
for i in range(args.num_eval_batches):
data = sample_marginal_and_conditional(args.batch_size)
z1, z2_con_z1 = data
z1 = z1.to(device)
z2_con_z1 = z2_con_z1.to(device)
z3 = torch.roll(z1, 1, 0)
z1_rec = h(z1)
z2_con_z1_rec = h(z2_con_z1)
z3_rec = h(z3)
(
linear_disentanglement_score,
_,
), _ = disentanglement_utils.linear_disentanglement(z1, z1_rec, mode="r2")
(
permutation_disentanglement_score,
_,
), _ = disentanglement_utils.permutation_disentanglement(
z1, z1_rec, mode="pearson", solver="munkres", rescaling=True
)
final_linear_scores.append(linear_disentanglement_score)
final_perm_scores.append(permutation_disentanglement_score)
print(
"linear mean: {} std: {}".format(
np.mean(final_linear_scores), np.std(final_linear_scores)
)
)
print(
"perm mean: {} std: {}".format(
np.mean(final_perm_scores), np.std(final_perm_scores)
)
)
if __name__ == "__main__":
main()