-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathutils.py
254 lines (222 loc) · 7.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from collections import deque, Counter
import warnings
import pandas as pd
import numpy as np
from xml.etree import ElementTree as ET
import math
BIOLOGICAL_PROCESS = 'GO:0008150'
MOLECULAR_FUNCTION = 'GO:0003674'
CELLULAR_COMPONENT = 'GO:0005575'
FUNC_DICT = {
'cc': CELLULAR_COMPONENT,
'mf': MOLECULAR_FUNCTION,
'bp': BIOLOGICAL_PROCESS}
NAMESPACES = {
'cc': 'cellular_component',
'mf': 'molecular_function',
'bp': 'biological_process'
}
EXP_CODES = set([
'EXP', 'IDA', 'IPI', 'IMP', 'IGI', 'IEP', 'TAS', 'IC',
'HTP', 'HDA', 'HMP', 'HGI', 'HEP'])
# CAFA4 Targets
CAFA_TARGETS = set([
'287', '3702', '4577', '6239', '7227', '7955', '9606', '9823', '10090',
'10116', '44689', '83333', '99287', '226900', '243273', '284812', '559292'])
def is_cafa_target(org):
return org in CAFA_TARGETS
def is_exp_code(code):
return code in EXP_CODES
class Ontology(object):
def __init__(self, filename='data/go.obo', with_rels=False):
self.ont = self.load(filename, with_rels)
self.ic = None
def has_term(self, term_id):
return term_id in self.ont
def get_term(self, term_id):
if self.has_term(term_id):
return self.ont[term_id]
return None
def calculate_ic(self, annots):
cnt = Counter()
for x in annots:
cnt.update(x)
self.ic = {}
for go_id, n in cnt.items():
parents = self.get_parents(go_id)
if len(parents) == 0:
min_n = n
else:
min_n = min([cnt[x] for x in parents])
self.ic[go_id] = math.log(min_n / n, 2)
def get_ic(self, go_id):
if self.ic is None:
raise Exception('Not yet calculated')
if go_id not in self.ic:
return 0.0
return self.ic[go_id]
def load(self, filename, with_rels):
ont = dict()
obj = None
with open(filename, 'r') as f:
for line in f:
line = line.strip()
if not line:
continue
if line == '[Term]':
if obj is not None:
ont[obj['id']] = obj
obj = dict()
obj['is_a'] = list()
obj['part_of'] = list()
obj['regulates'] = list()
obj['alt_ids'] = list()
obj['is_obsolete'] = False
continue
elif line == '[Typedef]':
if obj is not None:
ont[obj['id']] = obj
obj = None
else:
if obj is None:
continue
l = line.split(": ")
if l[0] == 'id':
obj['id'] = l[1]
elif l[0] == 'alt_id':
obj['alt_ids'].append(l[1])
elif l[0] == 'namespace':
obj['namespace'] = l[1]
elif l[0] == 'is_a':
obj['is_a'].append(l[1].split(' ! ')[0])
elif with_rels and l[0] == 'relationship':
it = l[1].split()
# add all types of relationships
obj['is_a'].append(it[1])
elif l[0] == 'name':
obj['name'] = l[1]
elif l[0] == 'is_obsolete' and l[1] == 'true':
obj['is_obsolete'] = True
if obj is not None:
ont[obj['id']] = obj
for term_id in list(ont.keys()):
for t_id in ont[term_id]['alt_ids']:
ont[t_id] = ont[term_id]
if ont[term_id]['is_obsolete']:
del ont[term_id]
for term_id, val in ont.items():
if 'children' not in val:
val['children'] = set()
for p_id in val['is_a']:
if p_id in ont:
if 'children' not in ont[p_id]:
ont[p_id]['children'] = set()
ont[p_id]['children'].add(term_id)
return ont
def get_anchestors(self, term_id):
if term_id not in self.ont:
return set()
term_set = set()
q = deque()
q.append(term_id)
while(len(q) > 0):
t_id = q.popleft()
if t_id not in term_set:
term_set.add(t_id)
for parent_id in self.ont[t_id]['is_a']:
if parent_id in self.ont:
q.append(parent_id)
return term_set
def get_parents(self, term_id):
if term_id not in self.ont:
return set()
term_set = set()
for parent_id in self.ont[term_id]['is_a']:
if parent_id in self.ont:
term_set.add(parent_id)
return term_set
def get_namespace_terms(self, namespace):
terms = set()
for go_id, obj in self.ont.items():
if obj['namespace'] == namespace:
terms.add(go_id)
return terms
def get_namespace(self, term_id):
return self.ont[term_id]['namespace']
def get_term_set(self, term_id):
if term_id not in self.ont:
return set()
term_set = set()
q = deque()
q.append(term_id)
while len(q) > 0:
t_id = q.popleft()
if t_id not in term_set:
term_set.add(t_id)
for ch_id in self.ont[t_id]['children']:
q.append(ch_id)
return term_set
def read_fasta(filename):
seqs = list()
info = list()
seq = ''
inf = ''
with open(filename, 'r') as f:
for line in f:
line = line.strip()
if line.startswith('>'):
if seq != '':
seqs.append(seq)
info.append(inf)
seq = ''
inf = line[1:]
else:
seq += line
seqs.append(seq)
info.append(inf)
return info, seqs
class DataGenerator(object):
def __init__(self, batch_size, is_sparse=False):
self.batch_size = batch_size
self.is_sparse = is_sparse
def fit(self, inputs, targets=None):
self.start = 0
self.inputs = inputs
self.targets = targets
if isinstance(self.inputs, tuple) or isinstance(self.inputs, list):
self.size = self.inputs[0].shape[0]
else:
self.size = self.inputs.shape[0]
self.has_targets = targets is not None
def __next__(self):
return self.next()
def reset(self):
self.start = 0
def next(self):
if self.start < self.size:
batch_index = np.arange(
self.start, min(self.size, self.start + self.batch_size))
if isinstance(self.inputs, tuple) or isinstance(self.inputs, list):
res_inputs = []
for inp in self.inputs:
if self.is_sparse:
res_inputs.append(
inp[batch_index, :].toarray())
else:
res_inputs.append(inp[batch_index, :])
else:
if self.is_sparse:
res_inputs = self.inputs[batch_index, :].toarray()
else:
res_inputs = self.inputs[batch_index, :]
self.start += self.batch_size
if self.has_targets:
if self.is_sparse:
labels = self.targets[batch_index, :].toarray()
else:
labels = self.targets[batch_index, :]
return (res_inputs, labels)
return res_inputs
else:
self.reset()
return self.next()