-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathevaluate_filters.py
executable file
·176 lines (152 loc) · 5.46 KB
/
evaluate_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
import click as ck
import numpy as np
import pandas as pd
from tensorflow.keras.models import load_model
from subprocess import Popen, PIPE
import time
from utils import Ontology, NAMESPACES, FUNC_DICT
from aminoacids import to_onehot
import math
MAXLEN = 2000
@ck.command()
@ck.option('--model-file', '-mf', default='data/model.h5', help='Tensorflow model file')
@ck.option('--terms-file', '-tf', default='data/terms.pkl', help='List of predicted terms')
@ck.option('--annotations-file', '-tf', default='data/train_data.pkl', help='Experimental annotations')
def main(model_file, terms_file, annotations_file):
go_rels = Ontology('data/go.obo', with_rels=True)
terms_df = pd.read_pickle(terms_file)
terms = terms_df['terms'].values.flatten()
df = pd.read_pickle(annotations_file)
annotations = df['annotations'].values
annotations = list(map(lambda x: set(x), annotations))
go_rels.calculate_ic(annotations)
# df = df[df['orgs'] == '559292']
sl = 0
annotations = df['annotations'].values
annotations = list(map(lambda x: set(x), annotations))
prot_ids = df['proteins'].values
ids, data = get_data(df['sequences'])
# Load CNN model
model = load_model(model_file)
preds = model.predict(data, batch_size=100, verbose=1)
assert preds.shape[1] == len(terms)
mf_set = go_rels.get_namespace_terms(NAMESPACES['mf'])
# terms = ['GO:0008047']
for l in range(len(terms)):
# if terms[l] not in mf_set:
# continue
deep_preds = {}
for i, j in enumerate(ids):
prot_id = prot_ids[j]
if prot_id not in deep_preds:
deep_preds[prot_id] = {}
if preds[i, l] >= 0.01: # Filter out very low scores
if terms[l] not in deep_preds[prot_id]:
deep_preds[prot_id][terms[l]] = preds[i, l]
else:
deep_preds[prot_id][terms[l]] = max(
deep_preds[prot_id][terms[l]], preds[i, l])
go_set = set([terms[l]])
# go_set.remove(FUNC_DICT['mf'])
labels = list(map(lambda x: set(filter(lambda y: y in go_set, x)), annotations))
bin_labels = list(map(lambda x: len(x), labels))
pos_cnt = sum(bin_labels)
fmax = 0.0
tmax = 0.0
smin = 1000
for t in range(0, 100):
threshold = t / 100.0
predictions = []
for i, row in enumerate(df.itertuples()):
annots_dict = deep_preds[row.proteins] or {}
annots = set()
for go_id, score in annots_dict.items():
if score >= threshold:
annots.add(go_id)
# new_annots = set()
# for go_id in annots:
# new_annots |= go_rels.get_anchestors(go_id)
predictions.append(annots)
# Filter classes
predictions = list(map(lambda x: set(filter(lambda y: y in go_set, x)), predictions))
fscore, prec, rec, s = evaluate_annotations(go_rels, labels, predictions)
# print(f'Fscore: {fscore}, S: {s}, threshold: {threshold}')
if fmax < fscore:
fmax = fscore
tmax = threshold
if smin > s:
smin = s
print(f'{terms[l]} {pos_cnt} Fmax: {fmax:0.3f}, Smin: {smin:0.3f}, threshold: {tmax}')
# for l in range(16):
# conv1 = model.layers[l + 1]
# weights = conv1.get_weights()
# w1 = weights[0]
# w2 = weights[1]
# AALETTER = np.array([
# '*', 'A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I',
# 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'])
# for i in range(512):
# motif = ''.join(AALETTER[np.argmax(w1[:, :, i], axis=1)])
# print(f'>{l}_{i}')
# print(motif)
def get_data(sequences):
pred_seqs = []
ids = []
for i, seq in enumerate(sequences):
if len(seq) > MAXLEN:
st = 0
while st < len(seq):
pred_seqs.append(seq[st: st + MAXLEN])
ids.append(i)
st += MAXLEN - 128
else:
pred_seqs.append(seq)
ids.append(i)
n = len(pred_seqs)
data = np.zeros((n, MAXLEN, 21), dtype=np.float32)
for i in range(n):
seq = pred_seqs[i]
data[i, :, :] = to_onehot(seq)
return ids, data
def evaluate_annotations(go, real_annots, pred_annots):
total = 0
p = 0.0
r = 0.0
p_total= 0
ru = 0.0
mi = 0.0
for i in range(len(real_annots)):
if len(real_annots[i]) == 0:
continue
tp = set(real_annots[i]).intersection(set(pred_annots[i]))
fp = pred_annots[i] - tp
fn = real_annots[i] - tp
for go_id in fp:
mi += go.get_ic(go_id)
for go_id in fn:
ru += go.get_ic(go_id)
tpn = len(tp)
fpn = len(fp)
fnn = len(fn)
total += 1
recall = tpn / (1.0 * (tpn + fnn))
r += recall
if len(pred_annots[i]) > 0:
p_total += 1
precision = tpn / (1.0 * (tpn + fpn))
p += precision
if total == 0:
return 0, 0, 0, 1000
ru /= total
mi /= total
r /= total
if p_total > 0:
p /= p_total
f = 0.0
if p + r > 0:
f = 2 * p * r / (p + r)
s = math.sqrt(ru * ru + mi * mi)
return f, p, r, s
if __name__ == '__main__':
main()