-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmulti_team_parallel.py
251 lines (219 loc) · 11.5 KB
/
multi_team_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
import importlib, copy, atexit
from UTIL.data_struct import UniqueList
from UTIL.shm_pool import SmartPool
class alg_parallel_wrapper(object):
def __init__(self, t_name, n_agent, n_thread, space, mcv, team) -> None:
self.team = team
if mcv is None: mcv = self.init_alg_logger()
module_, class_ = t_name.split('->')
init_f = getattr(importlib.import_module(module_), class_)
self.alg = init_f(n_agent, n_thread, space, mcv, team)
self._hook_deligate_ = None
def interact_with_env(self, _input_):
_act_, _t_intel_ = self.alg.interact_with_env(_input_)
for k in list(_t_intel_.keys()):
if not k.startswith('_'): _t_intel_.pop(k)
# _act_.shape=(n_thread, n_agent, action_dim)
if '_hook_' in _t_intel_ and _t_intel_['_hook_'] is not None:
self._hook_deligate_ = _t_intel_.pop('_hook_')
_t_intel_['_hook_'] = 'call_hook_deligate'
return _act_, _t_intel_
def call_hook_deligate(self, callback_arg):
assert self._hook_deligate_ is not None
self._hook_deligate_(callback_arg)
self._hook_deligate_ = None
def notify_teams(self, message, kargs):
if (not hasattr(self.alg, 'on_notify')) or (not callable(self.alg.on_notify)):
return
self.alg.on_notify(message, **kargs)
# -- you may delete it or replace it with Tensorboard --
def init_alg_logger(self):
from config import GlobalConfig as cfg
from VISUALIZE.mcom import mcom
logdir = cfg.logdir
if cfg.activate_logger:
mcv = mcom( path=f'{logdir}/logger/{self.team}/',
image_path=f'{logdir}/team-{self.team}.jpg',
rapid_flush=True,
draw_mode=cfg.draw_mode,
tag='[multi_team_parallel.py]',
resume_mod=cfg.resume_mod)
mcv.rec_init(color='k')
return mcv
class MMPlatform(object):
def __init__(self, mcv, envs):
from config import GlobalConfig
self.n_t = GlobalConfig.ScenarioConfig.N_TEAM # n_t => n_teams
n_agents_each_t = GlobalConfig.ScenarioConfig.N_AGENT_EACH_TEAM # n_agents_each_t => n_agents_each_team
self.t_member_list = GlobalConfig.ScenarioConfig.AGENT_ID_EACH_TEAM
self.t_name = GlobalConfig.ScenarioConfig.TEAM_NAMES
assert self.n_t == len(self.t_name), 'Team does not match agent id' # check N_TEAM
assert self.n_t == len(UniqueList(self.t_name)), 'Team name must not repeat' # please duplicate algorithm if needed
self.align_episode = GlobalConfig.align_episode
self.n_thread = GlobalConfig.num_threads
self.legacy_act_order = True
if GlobalConfig.mt_act_order == 'new_method':
self.legacy_act_order = False
self.RewardAsUnity = False # env give reward of each team instead of agent
if hasattr(GlobalConfig.ScenarioConfig, 'RewardAsUnity'):
self.RewardAsUnity = GlobalConfig.ScenarioConfig.RewardAsUnity
self.ActAsUnity = False
if hasattr(GlobalConfig.ScenarioConfig, 'ActAsUnity'):
self.ActAsUnity = GlobalConfig.ScenarioConfig.ActAsUnity
self.ObsAsUnity = False
if hasattr(GlobalConfig.ScenarioConfig, 'ObsAsUnity'):
self.ObsAsUnity = GlobalConfig.ScenarioConfig.ObsAsUnity
space = envs.get_space() # get observation space and action space
arg_list = []
for t in range(self.n_t):
assert len(self.t_member_list[t]) == n_agents_each_t[t]
assert '->' in self.t_name[t]
arg_list.append((
self.t_name[t], # 't_name'
n_agents_each_t[t], # 'n_agent'
self.n_thread, # 'n_thread'
space, # 'space'
None, # 'mcv'
t, # 'team'
))
print('[multi_team_parallel] distributing algorithm to independent process')
self.alg_parallel_exe = SmartPool(fold=1, proc_num=self.n_t, base_seed=GlobalConfig.seed)
atexit.register(self.alg_parallel_exe.party_over) # failsafe, handles shm leak
self.alg_parallel_exe.add_target(
name='alg_parallel_exe',
lam=alg_parallel_wrapper,
args_list=arg_list
)
print('[multi_team_parallel] distribution is done')
pass
def act(self, runner_info):
actions_list = []
_t_intel_feed_list_ = []
for t_name, t_members, t_index in zip(self.t_name, self.t_member_list, range(self.n_t)):
# split intel such as reward and observation into different teams
_t_intel_ = self._split_intel(runner_info, t_members, t_name, t_index)
_t_intel_feed_list_.append(_t_intel_)
results = self.alg_parallel_exe.exec_target(name='alg_parallel_exe', dowhat='interact_with_env', args_list=_t_intel_feed_list_, ensure_safe=True)
# each team (controlled by different algorithms) interacts with env and act
# _act_, _t_intel_ = algo_fdn.interact_with_env(_t_intel_)
_act_mt_, _t_intel_mt_ = zip(*results)
for t_name, t_members, _act_, _t_intel_, t_index in zip(self.t_name, self.t_member_list, _act_mt_, _t_intel_mt_, range(self.n_t)):
# concat actions of each agent ('_act_' --> 'actions_list')
actions_list = self._append_act_to_list(_act_, actions_list, t_members)
# loop back internal states registered in _t_intel_ (e.g._division_obs_)
if _t_intel_ is None: continue
# process internal states loop back, featured with keys that startswith and endswith '_'
for key in _t_intel_:
if key.startswith('_') and key.endswith('_'):
self._update_runner(runner_info, runner_info['ENV-PAUSE'], t_name, key, _t_intel_[key])
pass
# swapaxes: [n_agent(n_teams if ActAsUnity), n_thread] --> [n_thread, $n_agent(n_teams if ActAsUnity)]
actions_list = np.swapaxes(np.array(actions_list, dtype=np.double), 0, 1)
# in align_episode mod, threads that are paused are forced to give NaN action
ENV_PAUSE = runner_info['ENV-PAUSE']
if ENV_PAUSE.any() and self.align_episode: actions_list[ENV_PAUSE,:] = np.nan
return actions_list, runner_info
def before_terminate(self, runner_info):
for t_name, t_members, t_index in zip(self.t_name, self.t_member_list, range(self.n_t)):
# split info such as reward and observation
self._split_intel(runner_info, t_members, t_name, t_index)
def _update_runner(self, runner_info, ENV_PAUSE, t_name, key, content):
u_key = t_name+key
if (u_key in runner_info) and hasattr(content, '__len__') and \
len(content)==self.n_thread and ENV_PAUSE.any():
runner_info[u_key][~ENV_PAUSE] = content[~ENV_PAUSE]
return
runner_info[u_key] = content
return
# seperate observation between teams
def _split_intel(self, runner_info, t_members, t_name, t_index):
# RUNNING = ~runner_info['ENV-PAUSE']
# Team_Info and ter_obs_echo are None when runner_info['Latest-Team-Info'] is absent
Team_Info = None
ter_obs_echo = None
# load Team_Info and ter_obs_echo
if runner_info['Latest-Team-Info'] is not None:
assert isinstance(runner_info['Latest-Team-Info'][0], dict)
Team_Info = runner_info['Latest-Team-Info']
# if a env just ended ('Env-Suffered-Reset'), the final step obs can be acquired here
ter_obs_echo = np.array([None for _ in range(self.n_thread)], dtype=object)
for thread_idx, done in enumerate(runner_info['Env-Suffered-Reset']):
if done and ('obs-echo' in Team_Info[thread_idx]):
ter_obs_echo[thread_idx] = self.__split_obs_thread(Team_Info[thread_idx]['obs-echo'], t_index)
Team_Info_Downstream = copy.deepcopy(Team_Info)
for i in range(len(Team_Info_Downstream)):
if 'obs-echo' in Team_Info_Downstream[i]:
Team_Info_Downstream[i].pop('obs-echo')
o = self.__split_obs(runner_info['Latest-Obs'], t_index)
reward = runner_info['Latest-Reward']
# summary
t_intel_basic = {
'Team_Name': t_name,
'Latest-Obs': o,
'Latest-Team-Info': Team_Info_Downstream,
'Env-Suffered-Reset': runner_info['Env-Suffered-Reset'],
'Terminal-Obs-Echo': ter_obs_echo,
'ENV-PAUSE': runner_info['ENV-PAUSE'],
'Test-Flag': runner_info['Test-Flag'],
'Latest-Reward': reward[:, t_members] if not self.RewardAsUnity else reward[:, t_index],
'Current-Obs-Step': runner_info['Current-Obs-Step']
}
# deal with algorithm callback
key = f'{t_name}_hook_'
if (key in runner_info) and (runner_info[key] is not None):
t_intel_basic['_hook_'] = runner_info[key]
self.deal_with_hook(t_intel_basic['_hook_'], t_intel_basic, t_index)
runner_info[key] = None
t_intel_basic['_hook_'] = None
# remove _hook_ key
t_intel_basic.pop('_hook_')
# t_intel_basic = self.filter_running(t_intel_basic, RUNNING)
return t_intel_basic
def _append_act_to_list(self, _act_, actions_list, t_members):
if not self.legacy_act_order: _act_ = np.swapaxes(_act_, 0, 1)
assert _act_.shape[0]==len(t_members), ('number of actions differs number of agents!')
append_op = actions_list.append if self.ActAsUnity else actions_list.extend
append_op(_act_)
return actions_list
def deal_with_hook(self, hook, t_intel_basic, t_index):
# use the hook left by algorithm to callback some function
# to deliver reward and reset signals
# assert self.L_RUNNING is not None
# t_intel_basic = self.filter_running(t_intel_basic, self.L_RUNNING)
arg = { 'reward':t_intel_basic['Latest-Reward'],
'done': t_intel_basic['Env-Suffered-Reset'],
'info': t_intel_basic['Latest-Team-Info'],
'Latest-Obs':t_intel_basic['Latest-Obs'],
'Terminal-Obs-Echo': t_intel_basic['Terminal-Obs-Echo'],
}
if hook == 'call_hook_deligate':
# name, dowhat, args_list index_list
self.alg_parallel_exe.exec_target(
name='alg_parallel_exe',
dowhat='call_hook_deligate',
args_list=[arg],
index_list=[t_index],
ensure_safe=True
)
else:
hook(arg)
def notify_teams(self, message, **kargs):
args_list = [(message, kargs)] * self.n_t
self.alg_parallel_exe.exec_target(name='alg_parallel_exe', dowhat='notify_teams', args_list=args_list, ensure_safe=True)
def __split_obs(self, obs, t_index):
# obs [n_thread, n_team/n_agent, coredim]
if obs[0] is None:
o = None
elif self.ObsAsUnity:
o = obs[:, t_index]
else: # in most cases
o = obs[:, self.t_member_list[t_index]]
return o
def __split_obs_thread(self, obs, t_index):
# obs [n_thread, n_team/n_agent, coredim]
if self.ObsAsUnity:
o = obs[t_index]
else: # in most cases
o = obs[self.t_member_list[t_index]]
return o