-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrod_obs_sim1_plot_KF3_rmse.m
272 lines (211 loc) · 7.37 KB
/
rod_obs_sim1_plot_KF3_rmse.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
% Make plots of RMSE for different Kalman Filter tunings from
% simulation results summary file
%
% This is for the Figure 'Tuning of Kalman filter to minimise
% estimation errors' in thesis report.
%
clear all
addpath("../plot-utils")
% Main folder where all simulation results are saved
sims_dir = 'simulations';
% Simulation group name
sim_name = "rod_obs_sim1_3KF_Q";
% Create main directory for these simulations
base_dir = fullfile(sims_dir, sim_name);
if ~isfolder(base_dir)
mkdir(base_dir);
end
% Sub-directory to store plot images
plot_dir = fullfile(base_dir, 'plots');
if ~isfolder(plot_dir)
mkdir(plot_dir);
end
%% Load simulation summary results from csv file
% Specify column names for which values should be identical
id_cols = {'t_stop', 'Ts', 'nT', 'nu', 'ny', 'n', ...
'epsilon', 'sigma_M', ...
'sigma_wp_1_1', 'sigma_wp_1_2', ...
'KF3_model_R', 'KF3_model_Q_1_1' ...
};
% Specify column names for which values should be unique
uniq_cols = {'seed', 'KF1_model_Q_2_2', 'KF2_model_Q_2_2', 'KF3_model_Q_2_2'};
filename = "rod_obs_sim_outputs_summary.csv";
results_table = readtable(fullfile(base_dir, 'results', filename));
fprintf("Existing results loaded from file: %s\n", filename)
[n_rows, n_cols] = size(results_table);
fprintf("Table size: (%d, %d)\n", n_rows, n_cols)
col_names = results_table.Properties.VariableNames;
n_obs = 0;
obs_cols = {};
n_mse = 0;
mse_cols = {};
for i = 1:numel(col_names)
name = col_names{i};
if startsWith(name, 'obs')
n_obs = n_obs + 1;
obs_cols{n_obs} = name;
elseif startsWith(name, 'RMSE_')
n_mse = n_mse + 1;
mse_cols{n_mse} = name;
end
end
% Check all simulations are with same observers and
% other parameters match or are unique (for each seed)
% (This loop will only execute if there is more than one row)
for i = 2:n_rows
obs_labels = results_table{i, obs_cols};
assert(isequal(obs_labels, results_table{1, obs_cols}));
match_params = results_table{i, id_cols};
assert(isequal(match_params, results_table{1, id_cols}));
uniq_params = results_table{i, uniq_cols};
assert(~isequal(uniq_params, results_table{1, uniq_cols}));
end
obs_labels = unique(results_table{:, obs_cols});
fprintf("Observers: %s\n", strjoin(obs_labels));
% Find all unique seed values
seed_values = unique(results_table.seed);
fprintf("Seeds: %s\n", strjoin(string(seed_values)));
n_seeds = numel(seed_values);
% X-axis variable for all plots
x_label = 'KF3_model_Q_2_2';
x_plot_label = '$\sigma_{w_p}^2$';
% Values for x-axis
x_values = unique(results_table{:, x_label});
% Number of state variables
n = results_table{1, 'n'};
% Choose Y-axes variables for all plots
y_labels = {'RMSE_x_est_1_KF3', 'RMSE_x_est_2_KF3'};
n_plots = numel(y_labels);
y_plot_labels = {'$\mathrm{RMSE}(\hat{X}_1, X_1)$', ...
'$\mathrm{RMSE}(\hat{X}_2, X_2)$'};
title_strings = { ...
'(a) Root-mean-squared errors of estimates of state $x_1(k)$', ...
'(b) Root-mean-squared errors of estimates of state $x_2(k)$'};
%% Plot RMSEs for one selected simulation
% Plot with one selected seed - this should match the seed used
% to tune the other observers.
seed = 6;
% Select RMSE data
selection = results_table.seed == seed;
selected_data = results_table(selection, [{x_label} y_labels]);
selected_data = sortrows(selected_data);
assert(isequal(selected_data{:, x_label}, x_values))
figure(10); clf
[RMSE_mins, ind] = min(selected_data{:, y_labels}, [], 1);
RMSE_mins = RMSE_mins'; ind = ind';
x_argmins = selected_data{ind, x_label};
% Display minima
fprintf("Results for seed: %d\n", seed)
disp(table(ind, x_argmins, RMSE_mins))
for i = 1:n_plots
subplot(n_plots, 1, i);
y_values = selected_data{:, y_labels{i}};
semilogx(x_values, y_values, 'o-', 'Linewidth', 2, 'Markersize', 4);
ylim([0 inf]);
set(gca, 'TickLabelInterpreter', 'latex')
if i == n_plots
xlabel(x_plot_label, 'Interpreter', 'Latex')
end
ylabel(y_plot_labels{i}, 'Interpreter', 'Latex')
grid on
title(title_strings{i}, 'Interpreter', 'Latex')
end
% Standard size is [560 420]
set(gcf, 'Position', [100 730 448 336])
filename = sprintf('%s_seed_%d', sim_name, seed);
save_fig_to_pdf(fullfile(plot_dir, filename))
%% Plot with lines for all seeds simulated
fprintf("Best overall values (Min total RMSE(Y)):\n")
output_labels = {'RMSE_y_est_KF3'};
selected_data = results_table(:, [{x_label} output_labels]);
RMSE_sums = groupsummary(selected_data,x_label,'sum');
assert(all(RMSE_sums{:, 'GroupCount'} == n_seeds))
RMSE_sums(RMSE_sums{:, 'sum_RMSE_y_est_KF3'} == ...
min(RMSE_sums{:, 'sum_RMSE_y_est_KF3'}), ...
[x_label {'sum_RMSE_y_est_KF3'}])
fig = figure(11); clf
axs = cell(1, n_plots);
for i = 1:n_plots
axs{i} = subplot(n_plots, 1, i);
end
labels = cell(1, n_seeds);
x_argmins = nan(n_seeds, numel(y_labels));
for i_seed = 1:n_seeds
seed = seed_values(i_seed);
selected_results = results_table(results_table.seed == seed, :);
n = selected_results{1, 'n'};
n_plots = numel(y_labels);
plot_data = selected_results(:, [{x_label} y_labels]);
plot_data = sortrows(plot_data);
[y_mins, ind] = min(plot_data{:, y_labels});
x_argmins(i_seed, :) = plot_data{ind, x_label}';
x_values = plot_data{:, x_label};
for i = 1:n_plots
subplot(n_plots, 1, i);
y_values = plot_data{:, y_labels{i}};
semilogx(x_values, y_values, 'o-', 'Linewidth', 2, 'Markersize', 4);
hold on
end
labels{i_seed} = sprintf("%d%", seed);
end
for i = 1:n_plots
axes(axs{i})
ylim([0 inf]);
hold on
set(gca, 'TickLabelInterpreter', 'latex')
if j == n_plots
xlabel(x_plot_label, 'Interpreter', 'Latex')
end
ylabel(y_plot_labels{i}, 'Interpreter', 'Latex')
grid on
title(title_strings{i}, 'Interpreter', 'Latex')
end
% leg = legend(labels, 'Interpreter', 'Latex');
% leg.Position(1) = 0.9;
% leg.Position(2) = 0.4;
% Standard size is [560 420]
set(fig, 'Position', [100 350 448 336])
filename = sprintf('%s_all_seeds', sim_name);
save_fig_to_pdf(fullfile(plot_dir, filename))
%% Plot of averages with min-max ranges
% Select RMSE results from table
plot_data = cell(1, n_plots);
for j = 1:n_plots
plot_data{j} = nan(numel(x_values), n_seeds);
for i = 1:numel(x_values)
selection = (results_table{:, x_label} == x_values(i));
plot_data{j}(i, :) = results_table{selection, y_labels{j}};
end
end
fig = figure(12); clf
for j = 1:n_plots
plot_data = nan(numel(x_values), n_seeds);
for i = 1:numel(x_values)
selection = (results_table{:, x_label} == x_values(i));
plot_data(i, :) = results_table{selection, y_labels{j}};
end
subplot(n_plots, 1, j)
make_tsstatplot(plot_data, x_values, "", ...
x_plot_label, nan(1, 2), 'minmax', 'median')
set(gca,'Xscale','log')
l = get(gca, 'Legend');
if j < n_plots
xlabel([])
set(l,'visible','off')
else
l_pos = get(l, 'Position');
% [0.1663 0.3538 0.3150 0.0836]
l_pos(1) = 0.42;
set(l, 'Position', l_pos)
end
ylabel(y_plot_labels{j})
h_lines = get(gca, 'Children');
assert(numel(h_lines) == 2)
h_lines(1).Marker = '.';
h_lines(1).MarkerSize = 15;
title(title_strings{j}, 'Interpreter', 'latex')
end
% Standard size is [560 420]
set(fig, 'Position', [100 100 448 336])
filename = sprintf('%s_statplot', sim_name);
save_fig_to_pdf(fullfile(plot_dir, filename))