-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobs_rodin_step_2x2_opt.m
161 lines (136 loc) · 4.53 KB
/
obs_rodin_step_2x2_opt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
% Observers with parameters chosen by search
% See script
% - gen_sim_specs_sim2_MKF_SP_popt.m
% - run_obs_sims.m
% for the system defined in:
% - sys_rodin_step_2x2sym.m
%
addpath("../process-observers")
assert(exist("A", 'var'), strcat("System model not defined. ", ...
"Run script 'sys_rodin_step_2x2sym.m' first."))
% Check observability of system
Qobs = obsv(A,C);
unobs = length(A) - rank(Qobs);
assert(unobs == 0);
% Observer model without disturbance noise input
Bu = B(:, u_known);
Du = D(:, u_known);
nu = sum(u_known);
nw = sum(~u_known);
% Disturbance input (used by SKF observer)
Bw = B(:, ~u_known);
nw = sum(~u_known);
% System model for new observer functions
obs_model = struct;
obs_model.A = A;
obs_model.B = Bu;
obs_model.C = C;
obs_model.Ts = Ts;
% Steady-state Luenberger observer 1
% Specify poles of observer dynamics
poles = [0.8; 0.82; 0.85; 0.85];
LB1 = LuenbergerFilter(obs_model,poles,'LB1');
% Steady-state Luenberger observer 2
% Specify poles of observer dynamics
poles = [0.6; 0.65; 0.6; 0.65];
LB2 = LuenbergerFilter(obs_model,poles,'LB2');
% Process noise covariance for states 1 and 2
% These are used by all observers
q1 = 0.01; q2 = 0.01;
% Different values for covariance matrix
Q1 = diag([q1 q2 sigma_wp{1}(1)^2 sigma_wp{2}(1)^2]);
Q2 = diag([q1 q2 sigma_wp{1}(2)^2 sigma_wp{2}(2)^2]);
Q3 = diag([q1 q2 0.01 0.01]); % 2022-12-05 updated after fixing
% obs_rodin_step_KF3adj.m
% Covariance of output errors
R = diag(sigma_M.^2);
% Multiple model parameters for Kalman filters
obs_models = {obs_model, obs_model};
obs_models{1}.Q = Q1;
obs_models{1}.R = R;
obs_models{2}.Q = Q2;
obs_models{2}.R = R;
% Steady-state Kalman filter 1 - tuned to input noise
KFSS1 = KalmanFilterPSS(obs_models{1},'KFSS1');
% Steady-state Kalman filter 2 - tuned to input shocks
KFSS2 = KalmanFilterPSS(obs_models{2},'KFSS2');
% Parameters for manually-tuned Kalman filter (KF3)
model3 = obs_models{1}; % makes copy
model3.Q = Q3;
% Kalman filter 1 - tuned to sigma_wp(1)
P0 = 1000*eye(n);
KF1 = KalmanFilterF(obs_models{1},P0,'KF1');
% Kalman filter 2 - tuned to sigma_wp(2)
P0 = 1000*eye(n);
KF2 = KalmanFilterF(obs_models{2},P0,'KF2');
% Kalman filter 3 - manually tuned
P0 = 1000*eye(n);
KF3 = KalmanFilterF(model3,P0,'KF3');
% Multiple model observer with sequence fusion based on method
% described in Robertson et al. 1995.
label = 'MKF_SF95';
P0 = 1000*eye(n);
Q0 = diag([q1 q2 0 0]);
R = diag(sigma_M.^2);
f = 15; % fusion horizon
m = 2; % maximum number of shocks
d = 3; % spacing parameter
io.u_known = u_known;
io.y_meas = true(ny, 1);
MKF_SF95 = MKFObserverSF_RODD95(model,io,P0,epsilon,sigma_wp, ...
Q0,R,f,m,d,label);
% Multiple model observer with sequence fusion #1
label = 'MKF_SF1';
P0 = 1000*eye(n);
Q0 = diag([q1 q2 0 0]); % TODO: Is this correct?
R = diag(sigma_M.^2);
nf = 3; % fusion horizon
m = 2; % maximum number of shocks
d = 5; % spacing parameter
io.u_known = u_known;
io.y_meas = true(ny, 1);
MKF_SF1 = MKFObserverSF_RODD(model,io,P0,epsilon,sigma_wp,Q0,R,nf,m,d, ...
label);
% Multiple model observer with sequence fusion #2
label = 'MKF_SF2';
P0 = 1000*eye(n);
Q0 = diag([q1 q2 0 0]);
R = diag(sigma_M.^2);
%R = diag([1; 2.3].*sigma_M.^2);
nf = 5; % fusion horizon
m = 2; % maximum number of shocks
d = 3; % spacing parameter
io.u_known = u_known;
io.y_meas = true(ny, 1);
MKF_SF2 = MKFObserverSF_RODD(model,io,P0,epsilon,sigma_wp,Q0,R,nf,m,d, ...
label);
% General MKF - should be equivalent to MKF2
% Q1 = diag([q1 q2 sigma_wp(1,1)^2 sigma_wp(2,1)^2]);
% Qnj = diag([q1 q2 sigma_wp(1,2)^2 sigma_wp(2,2)^2]);
% MKF3 = MKFObserverS({A,A},{B,B},{C,C},Ts,P0,{Q1,Qnj},{R,R}, ...
% MKF_SF2.seq,MKF_SF2.T,'MKF3');
% Multiple model observer with sequence pruning #1
label = 'MKF_SP1';
P0 = 1000*eye(n);
Q0 = diag([q1 q2 0 0]);
R = diag(sigma_M.^2);
nh = 61; % number of hypotheses
n_min = 29; % minimum life of cloned hypotheses
io.u_known = u_known;
io.y_meas = true(ny, 1);
MKF_SP1 = MKFObserverSP_RODD(model,io,P0,epsilon,sigma_wp, ...
Q0,R,nh,n_min,label);
% Multiple model observer with sequence pruning #2
label = 'MKF_SP2';
P0 = 1000*eye(n);
Q0 = diag([q1 q2 0 0]);
R = diag(sigma_M.^2);
nh = 55; % number of hypotheses
n_min = 26; % minimum life of cloned hypotheses
MKF_SP2 = MKFObserverSP_RODD(model,io,P0,epsilon,sigma_wp, ...
Q0,R,nh,n_min,label);
% TODO: Restore
% observers = {LB1, LB2, KFSS1, KFSS2, KF1, KF2, KF3, MKF_SF1, MKF_SF2, ...
% MKF3, MKF_SP1, MKF_SP2};
observers = {LB1, LB2, KFSS1, KFSS2, KF1, KF2, KF3, MKF_SF95, MKF_SF1, ...
MKF_SF2, MKF_SP1, MKF_SP2};