-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
213 lines (152 loc) · 8.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import pickle
from pathlib import Path
from typing import Any, Dict, NamedTuple, Optional, Union
import jax.numpy as jnp
import numpy as np
class SolutionData(NamedTuple):
"""Solution data.
This data structure is useful to lump together the solution fields and the geometrical parameters of the system.
Attrs:
block_centroids (jnp.ndarray): Array of shape (n_blocks, 2) representing Reference centroids of the blocks.
centroid_node_vectors (jnp.ndarray): Array of shape (n_blocks, n_nodes_per_block, 2) representing the vectors connecting the centroid of the blocks to the nodes (effectively defining the shape of the blocks).
bond_connectivity (jnp.ndarray): Array of shape (n_bonds, 2) representing the connectivity of the bonds.
timepoints (jnp.ndarray): Array of shape (n_timepoints,) representing the timepoints at which the solution was saved.
fields (jnp.ndarray): Array of shape (n_timepoints, 2, n_blocks, 3) representing the solution fields (displacements and rotations) at each timepoint. The axis are (timepoint, displacement/velocity, block, x/y/theta).
"""
block_centroids: Any
centroid_node_vectors: Any
bond_connectivity: Any
timepoints: Any
fields: Any
class EigenmodeData(NamedTuple):
"""Eigenmode data.
This data structure is useful to lump together the eigenvalues/eigenmodes and the geometrical parameters of the system.
Attrs:
block_centroids (jnp.ndarray): Array of shape (n_blocks, 2) representing Reference centroids of the blocks.
centroid_node_vectors (jnp.ndarray): Array of shape (n_blocks, n_nodes_per_block, 2) representing the vectors connecting the centroid of the blocks to the nodes (effectively defining the shape of the blocks).
eigenvalues (jnp.ndarray): Array of shape (n_modes,) representing the eigenvalues.
fields (jnp.ndarray): Array of shape (n_modes, 2, n_blocks, 3) representing the eigenmodes (displacements and rotations). The axis are (mode, displacement, block, x/y/theta).
"""
block_centroids: Any
centroid_node_vectors: Any
eigenvalues: Any
fields: Any
SolutionType = Union[SolutionData, EigenmodeData]
class GeometricalParams(NamedTuple):
"""Geometrical parameters of the system.
These parameters are typically computed from a given geometry class defined in `difflexmm.geometry`.
Attrs:
block_centroids (jnp.ndarray): Centroid coordinates of the blocks.
centroid_node_vectors (jnp.ndarray): Array of shape (n_blocks, n_nodes_per_block, 2) representing the vectors connecting the centroid of the blocks to the nodes (effectively defining the shape of the blocks).
"""
block_centroids: Any
centroid_node_vectors: Any
class LigamentParams(NamedTuple):
"""Parameters for the bonds modeled as finite-length ligaments.
These are meant to be used with the ligament energy functions defined in `difflexmm.energy`.
Attrs:
k_stretch (jnp.ndarray): Either a scalar or an array of shape (n_bonds,) representing the stretch stiffness of each bond.
k_shear (jnp.ndarray): Either a scalar or an array of shape (n_bonds,) representing the shear stiffness of each bond.
k_rot (jnp.ndarray): Either a scalar or an array of shape (n_bonds,) representing the rotational stiffness of each bond.
reference_bond_vectors (jnp.ndarray): Array of shape (n_bonds, 2) representing the reference configuration of the bond (length matters). These are typically computed from a given geometry class.
"""
k_stretch: Any
k_shear: Any
k_rot: Any
reference_vector: Any
class StretchingTorsionalSpringParams(NamedTuple):
"""Parameters for the bonds modeled as zero-length springs accounting for stretching and bending.
These are meant to be used with the `stretching_torsional_spring_energy` functions defined in `difflexmm.energy`.
Attrs:
k_stretch (jnp.ndarray): Either a scalar or an array of shape (n_bonds,) representing the stretch stiffness of each bond.
k_rot (jnp.ndarray): Either a scalar or an array of shape (n_bonds,) representing the rotational stiffness of each bond.
"""
k_stretch: Any
k_rot: Any
BondParams = Union[LigamentParams, StretchingTorsionalSpringParams]
class ContactParams(NamedTuple):
"""Contact parameters for the simplified contact model.
See `energy.contact_energy` for details.
Note: If distance-based contact is used the min_angle and cutoff_angle are interpreted as distances.
Attrs:
min_angle (jnp.ndarray, optional): Lower bound for the angle between the blocks.
cutoff_angle (jnp.ndarray, optional): Cutoff for the contact energy.
k_contact (float, optional): Initial stiffness of the contact.
"""
min_angle: Any
cutoff_angle: Any
k_contact: Any
class MagneticParams(NamedTuple):
"""Magnetic parameters of the system.
These are meant to be used with the magnetic energy functions defined in `difflexmm.energy`.
Attrs:
dipole_angles (jnp.ndarray): Array of shape (n_dipoles, 2) representing the initial (reference) angles (in_plane_angle, pitch) of each dipole.
dipole_strengths (jnp.ndarray): Either a scalar or an array of shape (n_dipoles,) representing the magnitude of the magnetic moment of each dipole.
"""
dipole_angles: Any
dipole_strengths: Any
class MechanicalParams(NamedTuple):
"""Mechanical parameters of the system.
Attrs:
bond_params (BondParams): NamedTuple defining the bond parameters.
density (jnp.ndarray): Density of the blocks, either a scalar or an array of shape (n_blocks,).
inertia (jnp.ndarray, optional): Array of shape (n_blocks, 3) defining the inertia of the blocks. If None, the inertia is computed from the geometry and density. Defaults to None.
contact_params (ContactParams, optional): NamedTuple defining the contact parameters. Defaults to None.
"""
bond_params: BondParams
density: Any
inertia: Optional[Any] = None
damping: Any = 0.
contact_params: Optional[ContactParams] = None
class ControlParams(NamedTuple):
"""Control parameters for the dynamic solver.
The control parameters are used to define the geometry, the mechanical properties, loading parameters, etc.
This data structure is meant to help with the construction of the mapping: design variables -> geometry, mechanical properties, etc. -> dynamic solver.
Attrs:
geometrical_params (GeometricalParams): NamedTuple defining the geometrical parameters.
mechanical_params (MechanicalParams): NamedTuple defining the mechanical parameters.
magnetic_params (MagneticParams): NamedTuple defining the magnetic parameters.
loading_params (Dict[str, Any]): Loading parameters to be passed to loading functions. Default: {}.
constraint_params (Dict[str, Any]): Constraint parameters to be passed to constraint_DOFs_fn. Default: {}.
"""
geometrical_params: GeometricalParams # centroids and centroid_node_vectors
mechanical_params: MechanicalParams # bond params, mass density, damping
# dipole angles, dipole moments
magnetic_params: Optional[MagneticParams] = None
loading_params: Dict = dict()
constraint_params: Dict = dict()
def save_data(path_or_filename: Union[str, Path], data: object):
"""Saves data to a file via `pickle`.
Args:
path_or_filename (Union[str, Path]): Path or filename of the outputfile e.g. output.dat.
data (object): Object to be saved.
"""
path = Path(path_or_filename)
# Make sure parents directories exist
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "wb") as file:
pickle.dump(data, file)
print("Data saved at " + str(path))
def load_data(path_or_filename: Union[str, Path]):
"""Loads data object via `pickle`.
Args:
path_or_filename (Union[str, Path]): Path or filename of the data file e.g. output.dat.
Returns:
object: The data object.
"""
with open(path_or_filename, "rb") as file:
data = pickle.load(file)
if isinstance(data, (SolutionData, EigenmodeData)):
# Cast arrays to jax arrays
class_type = type(data)
return class_type(*(jnp.array(attr) if isinstance(attr, np.ndarray) else attr for attr in data))
return data
def is_scalar(x):
"""
Check if x is a scalar. Note: if x has no attribute shape is assumed to a scalar.
"""
# NOTE: this is needed because jnp.isscalar sucks.
if jnp.array(x).shape == ():
return True
else:
return False