-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdrag_force.m
186 lines (143 loc) · 6.77 KB
/
drag_force.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
function [x_c, time, Cd_steady, Cd_unsteady] = drag_force(A, INPUTS)
% LAST UPDATE IN: 19/05/2020
% By: Hadar Ben-Gida
%
% Update 1.6
% 1. The origin of the (X,Y) coordinate system of the PIV images is set at
% the bottom left corner of the image, where the x-axis points right and
% the y-axis points upwards.
% 2. The WAKE GUI is now reading .mat files that were generated by spatialbox,
% from .vec files of either INSIGHT or OPENPIV. This is done according to
% the value of the dy variable. dy>0 relates to OPENPIV .mat file. dy<0
% relates to INSIGHT .mat file.
% 3. OPENPIV saves PIV images with the y-axis originated at the upper left
% corner and pointing downwards. As a result, the v velocity component is
% flipped in sign. To solve this, when a .mat is loaded from OPENPIV, we
% flipped the y-axis, and change the sign of the v velocity component and
% the partial derivatives dv/dx and du/dx.
% 4. dy is taken positive throughout the wake and forces analyses, yet if
% the lsgradient function is used, dy value has to be negative. This is
% because the definition of our y-axis (positive upwards).
% Update 1.1
% Fluctuating velocities are now computed based on the averaged velocity of
% each PIV map
%
%
%% INPUTS
% A - .mat file consist with all the flow data
% INPUTS - Vector containing all the different paramters for the program
% INPUTS = [laser_dt, p_cm, dt, chord, wingspan, body_l, body_w, weight,...
% Uinf, density, viscosity, horizontal_cut, vertical_cut,...
% cycle_ni, cycle_nf];
%%
%% OUTPUTS
% x_c = x/c distance corresponding to the wingbeats cycles [vector]
% time - Physical time of the wingbeats cycles [vector]
% Cd_steady - Steady 2D drag coefficient [vector]
% Cd_unsteady - Unsteady 2D drag coefficient [vector]
%%
%% METER TO PIXEL PARAMETERS
p_cm = INPUTS(2); %[pixel/cm]
m_p = (1/p_cm)/100; %[m/pixel]
%%
%% WING PARAMETERS
c = INPUTS(4); % body's characteristic length [m]
b = INPUTS(5); % body's wingspan [m] (includes the body width)
W = INPUTS(8); % body's weight [kg]
g = 9.81; % Gravitational acceleration [m/sec2]
bl = INPUTS(6); % body's length [m]
bw = INPUTS(7); % body's width [m]
%%
%% FLOW PARAMETERS
rho = INPUTS(10); % Air Density [kg/m3] at 14.8oC
Mu = INPUTS(11); %[Pa*sec] Air Viscosity
U_inf = INPUTS(9); % Free Stream Velocity [m/sec]
%%
%% GETTING THE FLOW QUANTITIES AND RE-DEFINE THE VELOVITY MAP SIZE
dt_laser = INPUTS(1); % [sec] Time difference between consecutive PIV images
dt = INPUTS(3); % [sec] Time difference between consecutive velocity maps
h_cut = INPUTS(12); % number of vectors we slice from the vertical edges of the PIV image
v_cut = INPUTS(13); % number of vectors we slice from the horizontal edges of the PIV image
A.x = A.x(1+v_cut:end-v_cut, 1+h_cut:end-h_cut);
x = (A.x - A.x(1,1)).*m_p; % x Coordinate [m]
A.y = A.y(1+v_cut:end-v_cut, 1+h_cut:end-h_cut);
dx = A.dx*m_p; %dx=16pixels * (meter/pixel)
dy = A.dy*m_p; %dy=16pixels * (meter/pixel)
% THE (X,Y) ORIGIN IS SET THE LEFT BOTTOM CORNER OF THE IMAGE, WHERE X-AXIS
% IS DIRECTED TO THE RIGHT AND THE Y-AXIS IS DIRECTED UPWARDS
if dy < 0 % insight images (x,y) origin is at the left bottom corner of the image
dy = dy*(-1);
elseif dy > 0 % openpiv images (x,y) origin is at the left upper corner of the image
A.y = flip(A.y,1); % flipping the y axis to be origned at the left bootom corner of the image and directed upwards
A.v = -A.v; % Flipping the v-component velocity to fit the new y-axis origin
A.dvdx = -A.dvdx; % Flipping the dv/dx to fit the new y-axis origin
A.dudy = -A.dudy; % Flipping the du/dy to fit the new y-axis origin
end
y = (A.y - A.y(end,1)).*m_p; % y Coordinate [m]
y = y - (y(1)*0.5); % Placing the origin at the center of the Y-axis
% CALCULATING DERIVATIVES
[~, ~, nTime] = size(A.u);
for i=1:nTime
[A.dudx(:,:,i), A.dudy(:,:,i)] = lsgradient(A.u(:,:,i), A.dx, -abs(A.dy)); % dy must be negative in lsgradient
[A.dvdx(:,:,i), A.dvdy(:,:,i)] = lsgradient(A.v(:,:,i), A.dx, -abs(A.dy)); % dy must be negative in lsgradient
end
%%
%% Computing the Fluctuating velocity maps based on the spatial average
% Uncomment in order to use the uf & vf computed from the Spatial ToolBox
% [~,~,nTime] = size(A.uf);
% for i = 1:nTime
% Uavg = mean(mean(A.u(:,:,i))); % getting the average streamwise velocity
% Vavg = mean(mean(A.v(:,:,i))); % getting the average vertical velocity
% A.uf(:,:,i) = A.u(:,:,i) - Uavg; % Computing the fluctuating streamwise velocity
% A.vf(:,:,i) = A.v(:,:,i) - Vavg; % Computing the fluctuating vertical velocity
% end
Uavg = mean(A.u,3); % getting the average streamwise velocity
Vavg = mean(A.v,3); % getting the average vertical velocity
A.uf = A.u - Uavg; % Computing the fluctuating streamwise velocity
A.vf = A.v - Vavg; % Computing the fluctuating vertical velocity
%%
% Getting the different flow parameters (u, v, u', v', du/dx, du/dy,...)
A.u = A.u(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
u = A.u.*(m_p/dt_laser);
A.v = A.v(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
v = A.v.*(m_p/dt_laser);
A.uf = A.uf(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
uf = A.uf*(m_p/dt_laser);
A.vf = A.vf(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
vf = A.vf*(m_p/dt_laser);
A.dudx = A.dudx(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
dudx = A.dudx.*(1/dt_laser);
A.dvdx = A.dvdx(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
dvdx = A.dvdx.*(1/dt_laser);
A.dudy = A.dudy(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
dudy = A.dudy.*(1/dt_laser);
A.dvdy = A.dvdy(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
dvdy = A.dvdy.*(1/dt_laser);
[nRows, nColumns, ~] = size(uf); % Getting the NEW velocity map size
%%
%% WINGBEAT TIME DATA
n_i = INPUTS(14); % Wingbeat start at this image
n_f = INPUTS(15); % Wingbeat ends at this image
nTime = n_f - n_i + 1; % Number of images for the wingbeat
%%
%% ESTIMATION OF DRAG
DRAG_steady = zeros(nTime,1);
DRAG_unsteady = zeros(nTime,1);
dudt = zeros(nRows, nColumns, nTime);
time = zeros(nTime,1);
x_c = zeros(nTime,1);
for j = n_i:1:n_f
time(j-n_i+1) = (j-n_i)*dt; % physical time in [sec]
x_c(j-n_i+1) = (j-n_i)*dt*U_inf/c;
a = U_inf - u(:,:,j); %[m/sec] Streamwise velocity deficit
% mean velocity deficit Drag force over the entire image on the semi-span
DRAG_steady(j-n_i+1)=(mean(sum(((a).*(u(:,:,j)))*rho)))*dy; %[N/m]
end
x_c = flipud(x_c);
for j = n_i:1:n_f
% du/dt - Streamwise Acceleration Field
dudt(:,:,j-n_i+1)=(u(:,:,j+1)-u(:,:,j-1))/(2*dt); %[m/sec2]
DRAG_unsteady(j-n_i+1)=-sum(sum(dudt(:,:,j-n_i+1) ))*dx*dy*rho; %[N/m]
end
Cd_steady = DRAG_steady./(0.5*rho*c*U_inf^2);
Cd_unsteady = DRAG_unsteady./(0.5*rho*c*U_inf^2);