-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
336 lines (283 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import dataloaders_hsi
import torch
import numpy as np
from tqdm import tqdm
import argparse
import os
import torch.nn.functional as F
import time
from ops.utils_blocks import block_module
from ops.utils import show_mem, generate_key, save_checkpoint, str2bool, step_lr, get_lr
from model.MACNet import Params
from model.MACNet import MACNet
parser = argparse.ArgumentParser()
#model
parser.add_argument("--noise_level", type=int, dest="noise_level", help="Should be an int in the range [0,255]", default=25)
parser.add_argument("--nl_level", type=int, dest="nl_level", help="Should be an int in the range [0,255]", default=5)
parser.add_argument("--channels", type=int, dest="channels", help="Should be an int in the range [0,255]", default=16)
parser.add_argument("--bandwise", type=str2bool, default=1, help='bandwise noise')
parser.add_argument("--num_half_layer", type=int, dest="num_half_layer", help="Number of LISTA step unfolded", default=3)
parser.add_argument("--patch_size", type=int, dest="patch_size", help="Size of image blocks to process", default=64)
parser.add_argument("--rescaling_init_val", type=float, default=1.0)
parser.add_argument("--nu_init", type=float, default=1, help='convex combination of correlation map init value')
parser.add_argument("--corr_update", type=int, default=3, help='choose update method in [2,3] without or with patch averaging')
parser.add_argument("--multi_theta", type=str2bool, default=1, help='wether to use a sequence of lambda [1] or a single vector during lista [0]')
parser.add_argument("--diag_rescale_gamma", type=str2bool, default=0,help='diag rescaling code correlation map')
parser.add_argument("--diag_rescale_patch", type=str2bool, default=1,help='diag rescaling patch correlation map')
parser.add_argument("--freq_corr_update", type=int, default=6, help='freq update correlation_map')
parser.add_argument("--mask_windows", type=int, default=1,help='binarym, quadratic mask [1,2]')
parser.add_argument("--center_windows", type=str2bool, default=1, help='compute correlation with neighboors only within a block')
parser.add_argument("--multi_std", type=str2bool, default=0)
parser.add_argument("--gpus", '--list',action='append', type=int, help='GPU')
#training
parser.add_argument("--lr", type=float, dest="lr", help="ADAM Learning rate", default=1e-3)
parser.add_argument("--lr_step", type=int, dest="lr_step", help="ADAM Learning rate step for decay", default=80)
parser.add_argument("--lr_decay", type=float, dest="lr_decay", help="ADAM Learning rate decay (on step)", default=0.35)
parser.add_argument("--backtrack_decay", type=float, help='decay when backtracking',default=0.8)
parser.add_argument("--eps", type=float, dest="eps", help="ADAM epsilon parameter", default=1e-3)
parser.add_argument("--validation_every", type=int, default=300, help='validation frequency on training set (if using backtracking)')
parser.add_argument("--backtrack", type=str2bool, default=1, help='use backtrack to prevent model divergence')
parser.add_argument("--num_epochs", type=int, dest="num_epochs", help="Total number of epochs to train", default=300)
parser.add_argument("--train_batch", type=int, default=2, help='batch size during training')
parser.add_argument("--test_batch", type=int, default=3, help='batch size during eval')
parser.add_argument("--aug_scale", type=int, default=0)
parser.add_argument("--rs_real", type=str2bool, default=0)
#data
parser.add_argument("--out_dir", type=str, dest="out_dir", help="Results' dir path", default='./trained_model')
parser.add_argument("--model_name", type=str, dest="model_name", help="The name of the model to be saved.", default=None)
parser.add_argument("--test_path", type=str, help="Path to the dir containing the testing datasets.", default="data/")
parser.add_argument("--train_path", type=str, help="Path to the dir containing the training datasets.", default="data/")
parser.add_argument("--resume", type=str2bool, dest="resume", help='Resume training of the model',default=True)
parser.add_argument("--dummy", type=str2bool, dest="dummy", default=False)
parser.add_argument("--tqdm", type=str2bool, default=False)
parser.add_argument('--log_dir', type=str, default='log', help='log directory')
#inference
parser.add_argument("--stride_test", type=int, default=12, help='stride of overlapping image blocks [4,8,16,24,48] kernel_//stride')
parser.add_argument("--stride_val", type=int, default=40, help='stride of overlapping image blocks for validation [4,8,16,24,48] kernel_//stride')
parser.add_argument("--test_every", type=int, default=300, help='report performance on test set every X epochs')
parser.add_argument("--block_inference", type=str2bool, default=True,help='if true process blocks of large image in paralel')
parser.add_argument("--pad_image", type=str2bool, default=0,help='padding strategy for inference')
parser.add_argument("--pad_block", type=str2bool, default=1,help='padding strategy for inference')
parser.add_argument("--pad_patch", type=str2bool, default=0,help='padding strategy for inference')
parser.add_argument("--no_pad", type=str2bool, default=False, help='padding strategy for inference')
parser.add_argument("--custom_pad", type=int, default=None,help='padding strategy for inference')
#variance reduction
#var reg
parser.add_argument("--nu_var", type=float, default=0.01)
parser.add_argument("--freq_var", type=int, default=3)
parser.add_argument("--var_reg", type=str2bool, default=False)
parser.add_argument("--verbose", type=str2bool, default=1)
args = parser.parse_args()
# os.environ['CUDA_VISIBLE_DEVICES']= '6,7'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device_name = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'cpu'
capability = torch.cuda.get_device_capability(0) if torch.cuda.is_available() else os.cpu_count()
gpus=args.gpus
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
if device.type=='cuda':
torch.cuda.set_device('cuda:{}'.format(gpus[0]))
if args.stride_val>args.patch_size:
args.stride_val=args.patch_size//2
if args.stride_test>args.patch_size:
args.stride_test = args.patch_size // 2
test_path = [f'{args.test_path}']
train_path = [f'{args.train_path}']
val_path = train_path
noise_std = args.noise_level / 255
args.log_dir= args.log_dir+"_"+str(args.noise_level)
args.out_dir= args.out_dir+"_"+str(args.noise_level)
if args.bandwise:
args.log_dir = args.log_dir + "_bandwise"
args.out_dir += "_bandwise"
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
log_file_name = "./%s/MACNet_patch_%dLayer_%dlr_%.8f.txt" % (
args.log_dir,args.patch_size,args.num_half_layer*2, args.lr)
loaders = dataloaders_hsi.get_dataloaders(train_path, test_path, val_path, crop_size=args.patch_size,
batch_size=args.train_batch, downscale=args.aug_scale, concat=1,grey=False)
params = Params(in_channels=1, channels=args.channels,
num_half_layer=args.num_half_layer,rs=args.rs_real)
model = MACNet(params).to(device=device)
if device.type=='cuda':
model = torch.nn.DataParallel(model.to(device=device), device_ids=gpus)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, eps=args.eps)
if args.backtrack:
reload_counter = 0
pytorch_total_params = sum(p.numel() for p in model.parameters())
print(f'Arguments: {vars(args)}')
print('Nb tensors: ',len(list(model.named_parameters())), "; Trainable Params: ", pytorch_total_params, "; device: ", device,
"; name : ", device_name)
psnr = {x: np.zeros(args.num_epochs) for x in ['train', 'test', 'val']}
model_name = args.model_name if args.model_name is not None else generate_key()
model_name = "MACNet_patch_%dLayer_%dlr_%.8f" % (args.patch_size, args.num_half_layer*2, args.lr)
out_dir = os.path.join(args.out_dir, model_name)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
ckpt_path = os.path.join(out_dir+'/ckpt')
config_dict = vars(args)
if args.resume:
if os.path.isfile(ckpt_path):
try:
print('\n existing ckpt detected')
checkpoint = torch.load(ckpt_path)
start_epoch = checkpoint['epoch']
psnr_validation = checkpoint['psnr_validation']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print(f"=> loaded checkpoint '{ckpt_path}' (epoch {start_epoch})")
except Exception as e:
print(e)
print(f'ckpt loading failed @{ckpt_path}, exit ...')
exit()
else:
print(f'\nno ckpt found @{ckpt_path}')
start_epoch = 0
psnr_validation = 22.0
if args.backtrack:
state = {'psnr_validation': psnr_validation,
'epoch': 0,
'config': config_dict,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(), }
torch.save(state, ckpt_path + '_lasteval')
print(f'... starting training ...\n')
epoch = start_epoch
while epoch < args.num_epochs:
tic = time.time()
phases = ['train', 'val', 'test',]
for phase in phases:
if phase == 'train':
if (epoch % args.lr_step) == 0 and (epoch != 0) :
step_lr(optimizer, args.lr_decay)
model.train()
elif phase == 'val':
if not (args.backtrack and ((epoch+1) % args.validation_every == 0)):
continue
model.eval() # Set model to evaluate mode
print(f'\nstarting validation on train set with stride {args.stride_val}...')
elif phase == 'test':
if (epoch+1) % args.test_every != 0:
continue # test every k epoch
print(f'\nstarting eval on test set with stride {args.stride_test}...')
model.eval() # Set model to evaluate mode
# Iterate over data.
num_iters = 0
psnr_set = 0
loss_set = 0
loader = loaders[phase]
for batch in tqdm(loader,disable=not args.tqdm):
batch = batch.to(device=device)
if args.bandwise:
bands=batch.shape[1]
noise=torch.randn_like(batch)
for i in range(bands):
noise[:,i,:,:] = torch.randn_like(batch[:,i,:,:])*torch.rand(1).to(device=device)* noise_std
else:
noise = torch.randn_like(batch)* noise_std
noisy_batch = batch + noise
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
# Block inference during test phase
if (phase == 'test' or phase == 'val'):
if phase == 'val':
stride_test = args.stride_val
else:
stride_test = args.stride_test
if args.block_inference:
params = {
'crop_out_blocks': 0,
'ponderate_out_blocks': 1,
'sum_blocks': 0,
'pad_even': 1, # otherwise pad with 0 for las
'centered_pad': 0, # corner pixel have only one estimate
'pad_block': args.pad_block, # pad so each pixel has S**2 estimate
'pad_patch': args.pad_patch, # pad so each pixel from the image has at least S**2 estimate from 1 block
'no_pad': args.no_pad,
'custom_pad': args.custom_pad,
'avg': 1}
block = block_module(args.patch_size, stride_test, args.kernel_size, params)
batch_noisy_blocks = block._make_blocks(noisy_batch)
patch_loader = torch.utils.data.DataLoader(batch_noisy_blocks, batch_size=args.test_batch, drop_last=False)
batch_out_blocks = torch.zeros_like(batch_noisy_blocks)
for i, inp in enumerate(patch_loader): # if it doesnt fit in memory
id_from, id_to = i * patch_loader.batch_size, (i + 1) * patch_loader.batch_size
batch_out_blocks[id_from:id_to] = model(inp)
output = block._agregate_blocks(batch_out_blocks)
#print(torch.isnan(output).sum())
else:
output = model(noisy_batch)
loss = ((output.clamp(0., 1.) - batch)).pow(2).sum() / batch.shape[0]
loss_psnr = -10 * torch.log10((output.clamp(0., 1.) - batch).pow(2).mean([1, 2, 3])).mean()
if phase == 'train':
output = model(noisy_batch)
loss = ((output - batch)).pow(2).sum() / batch.shape[0]
loss_psnr = -10 * torch.log10((output - batch).pow(2).mean([1, 2, 3])).mean()
loss.backward()
optimizer.step()
# print("loss: \n", loss.item())
psnr_set += loss_psnr.item()
loss_set += loss.item()
num_iters += 1
if args.dummy:
break
tac = time.time()
psnr_set /= num_iters
loss_set /= num_iters
psnr[phase][epoch] = psnr_set
if phase == 'val':
r_err = -(psnr_set - psnr_validation)
print(
f'validation psnr {psnr_set:0.4f}, {psnr_validation:0.4f}, absolute_delta {-r_err:0.2e}, reload counter {reload_counter}')
path = ckpt_path + '_lasteval'
if r_err > 0.2: # test divergence
if os.path.isfile(path):
try:
print('backtracking: previous ckpt detected')
checkpoint = torch.load(path)
epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
[step_lr(optimizer, args.backtrack_decay) for _ in range(reload_counter + 1)]
print(f"loaded checkpoint '{path}' (epoch {epoch}), decreasing lr ==> {get_lr(optimizer):0.2e}")
reload_counter += 1
except Exception as e:
print('catched exception :')
print(e)
print(f'ckpt loading failed @{path}')
else:
print('no ckpt found for backtrack')
else:
reload_counter = 0
state = {'psnr_validation': psnr_validation,
'epoch': epoch,
'config': config_dict,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(), }
torch.save(state, ckpt_path + '_lasteval')
psnr_validation = psnr_set
if torch.cuda.is_available():
mem_used, max_mem = show_mem()
tqdm.write(f'epoch {epoch} - {phase} psnr: {psnr[phase][epoch]:0.4f} ({tac-tic:0.1f} s, {(tac - tic) / num_iters:0.3f} s/iter, max gpu mem allocated {max_mem:0.1f} Mb, lr {get_lr(optimizer):0.1e})')
else:
tqdm.write(f'epoch {epoch} - {phase} psnr: {psnr[phase][epoch]:0.4f} loss: {loss_set:0.4f} ({(tac-tic)/num_iters:0.3f} s/iter, lr {get_lr(optimizer):0.2e})')
with open(f'{log_file_name}', 'a') as log_file:
log_file = open(log_file_name, 'a')
log_file.write(
f'epoch {epoch} - {phase} psnr: {psnr[phase][epoch]:0.4f} loss: {loss_set:0.4f} ({(tac - tic) / num_iters:0.3f} s/iter, lr {get_lr(optimizer):0.2e})\n')
# output_file.close()
with open(f'{out_dir}/{phase}.psnr','a') as psnr_file:
psnr_file.write(f'{psnr[phase][epoch]:0.4f}\n')
epoch += 1
##################### saving #################
if epoch % 10 == 0:
save_checkpoint({'epoch': epoch,
'config': config_dict,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'psnr_validation': psnr_validation}, os.path.join(out_dir+'/ckpt_'+str(epoch)))
save_checkpoint({'epoch': epoch,
'config': config_dict,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'psnr_validation':psnr_validation}, ckpt_path)