-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtutorial_dataset.py
170 lines (136 loc) · 8.54 KB
/
tutorial_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import json
import cv2
import numpy as np
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from skimage import color
from PIL import Image, ImageMorph
import torch
from skimage.morphology import dilation, square
import os
class TrainDataset(Dataset):
def __init__(self, data_file_path, device = None):
self.device = torch.device("cuda:0") if device == None else device
self.gpu_ids = [int(self.device.index)]
self.data_root = data_file_path
with open(os.path.join(self.data_root, 'train.txt'), 'r') as file:
self.data = [line.rstrip('\n') for line in file]
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
pic_name = self.data[idx] + '.jpg'
shadowfree_img_path = os.path.join(self.data_root, 'shadowfree_imgs', pic_name)
object_mask_path = os.path.join(self.data_root, 'object_masks', pic_name)
shadow_mask_path = os.path.join(self.data_root, 'shadow_masks', pic_name)
shadow_img_path = os.path.join(self.data_root, 'shadow_imgs', pic_name)
background_object_mask_path = os.path.join(self.data_root, 'background_object_masks', pic_name)
background_shadow_mask_path = os.path.join(self.data_root, 'background_shadow_masks', pic_name)
prompt = ''
width, height = 512, 512
width_mask, height_mask = 64, 64
shadowfree_img = cv2.imread(shadowfree_img_path)
shadowfree_img = cv2.resize(shadowfree_img, (width, height))
object_mask = cv2.imread(object_mask_path, cv2.IMREAD_GRAYSCALE)
object_mask = cv2.resize(object_mask, (width, height))
background_object_mask = cv2.imread(background_object_mask_path, cv2.IMREAD_GRAYSCALE)
background_object_mask = cv2.resize(background_object_mask, (width, height))
background_shadow_mask = cv2.imread(background_shadow_mask_path, cv2.IMREAD_GRAYSCALE)
background_shadow_mask = cv2.resize(background_shadow_mask, (width, height))
shadow_img = cv2.imread(shadow_img_path)
shadow_img = cv2.resize(shadow_img, (width, height))
shadow_mask = cv2.imread(shadow_mask_path, cv2.IMREAD_GRAYSCALE)
shadow_mask = cv2.resize(shadow_mask, (width, height))
dilated_shadow_mask = cv2.resize(shadow_mask, (width_mask, height_mask))
kernal = np.ones((6,6), np.uint8)
dilated_shadow_mask = cv2.dilate(dilated_shadow_mask, kernal, iterations=1)
shadowfree_img = cv2.cvtColor(shadowfree_img, cv2.COLOR_BGR2RGB)
target = cv2.cvtColor(shadow_img, cv2.COLOR_BGR2RGB)
source = np.concatenate((shadowfree_img, object_mask[:, :, np.newaxis]), axis=-1)
source2 = np.concatenate((shadowfree_img, object_mask[:, :, np.newaxis], background_shadow_mask[:, :, np.newaxis]), axis=-1)
# Normalize source images to [0, 1].
source = source.astype(np.float32) / 255.0
source2 = source2.astype(np.float32) / 255.0
shadow_mask = shadow_mask.astype(np.float32) / 255.0
dilated_shadow_mask = dilated_shadow_mask.astype(np.float32) / 255.0
object_mask = object_mask.astype(np.float32) / 255.0
# Normalize target images to [-1, 1].
target = (target.astype(np.float32) / 127.5) - 1.0
return dict(jpg=target, txt=prompt, hint=source, hint2=source2, shadowmask=shadow_mask, objectmask=object_mask, dilated_shadow_mask=dilated_shadow_mask)
class TestDataset(Dataset):
def __init__(self, data_file_path, device = None, ifgt=False):
self.device = torch.device("cuda:0") if device == None else device
self.gpu_ids = [int(self.device.index)]
self.data_root = data_file_path
with open(os.path.join(self.data_root, 'test.txt'), 'r') as file:
self.data = [line.rstrip('\n') for line in file]
self.ifgt = ifgt
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if '.' in self.data[idx]:
pic_name = self.data[idx]
else:
pic_name = self.data[idx] + '.jpg'
shadowfree_img_path = os.path.join(self.data_root, 'shadowfree_imgs', pic_name)
object_mask_path = os.path.join(self.data_root, 'object_masks', pic_name)
shadow_mask_path = os.path.join(self.data_root, 'shadow_masks', pic_name)
if self.ifgt:
shadow_img_path = os.path.join(self.data_root, 'shadow_imgs', pic_name)
else:
shadow_img_path = os.path.join(self.data_root, 'shadowfree_imgs', pic_name)
background_object_mask_path = os.path.join(self.data_root, 'background_object_masks', pic_name)
background_shadow_mask_path = os.path.join(self.data_root, 'background_shadow_masks', pic_name)
prompt = ''
width, height = 512, 512
width_mask, height_mask = 64, 64
shadowfree_img = cv2.imread(shadowfree_img_path)
shadowfree_img = cv2.resize(shadowfree_img, (width, height))
object_mask = cv2.imread(object_mask_path, cv2.IMREAD_GRAYSCALE)
object_mask = cv2.resize(object_mask, (width, height))
background_object_mask = cv2.imread(background_object_mask_path, cv2.IMREAD_GRAYSCALE)
background_object_mask = cv2.resize(background_object_mask, (width, height))
background_shadow_mask = cv2.imread(background_shadow_mask_path, cv2.IMREAD_GRAYSCALE)
background_shadow_mask = cv2.resize(background_shadow_mask, (width, height))
shadow_img = cv2.imread(shadow_img_path)
shadow_img = cv2.resize(shadow_img, (width, height))
shadow_mask = cv2.imread(shadow_mask_path, cv2.IMREAD_GRAYSCALE)
shadow_mask = cv2.resize(shadow_mask, (width, height))
dilated_shadow_mask = cv2.resize(shadow_mask, (width_mask, height_mask))
kernal = np.ones((6,6), np.uint8)
dilated_shadow_mask = cv2.dilate(dilated_shadow_mask, kernal, iterations=1)
shadowfree_img = cv2.cvtColor(shadowfree_img, cv2.COLOR_BGR2RGB)
target = cv2.cvtColor(shadow_img, cv2.COLOR_BGR2RGB)
source = np.concatenate((shadowfree_img, object_mask[:, :, np.newaxis]), axis=-1)
source2 = np.concatenate((shadowfree_img, object_mask[:, :, np.newaxis], background_shadow_mask[:, :, np.newaxis]), axis=-1)
# Normalize source images to [0, 1].
source = source.astype(np.float32) / 255.0
source2 = source2.astype(np.float32) / 255.0
shadow_mask = shadow_mask.astype(np.float32) / 255.0
dilated_shadow_mask = dilated_shadow_mask.astype(np.float32) / 255.0
object_mask = object_mask.astype(np.float32) / 255.0
# Normalize target images to [-1, 1].
target = (target.astype(np.float32) / 127.5) - 1.0
shadow_img_ = cv2.imread(shadow_img_path)
shadow_img_ = cv2.resize(shadow_img_, (256, 256))
target_ = cv2.cvtColor(shadow_img_, cv2.COLOR_BGR2RGB)
target_ = (target_.astype(np.float32) / 127.5) - 1.0
shadow_mask_ = cv2.imread(shadow_mask_path, cv2.IMREAD_GRAYSCALE)
shadow_mask_ = cv2.resize(shadow_mask_, (256, 256))
shadow_mask_ = shadow_mask_.astype(np.float32) / 255.0
shadowfree_img_ = cv2.imread(shadowfree_img_path)
shadowfree_img_ = cv2.resize(shadowfree_img_, (256, 256))
shadowfree_img_ = cv2.cvtColor(shadowfree_img_, cv2.COLOR_BGR2RGB)
shadowfree_img_ = (shadowfree_img_.astype(np.float32) / 127.5) - 1.0
background_shadow_mask_ = cv2.imread(background_shadow_mask_path, cv2.IMREAD_GRAYSCALE)
background_shadow_mask_ = cv2.resize(background_shadow_mask_, (256,256))
background_shadow_mask_ = background_shadow_mask_.astype(np.float32) / 255.0
background_object_mask_ = cv2.imread(background_object_mask_path, cv2.IMREAD_GRAYSCALE)
background_object_mask_ = cv2.resize(background_object_mask_, (256,256))
background_object_mask_ = background_object_mask_.astype(np.float32) / 255.0
object_mask_ = cv2.imread(object_mask_path, cv2.IMREAD_GRAYSCALE)
object_mask_ = cv2.resize(object_mask_, (256, 256))
object_mask_ = object_mask_.astype(np.float32) / 255.0
return dict(jpg=target, txt=prompt, hint=source, hint2=source2, shadowmask=shadow_mask, objectmask=object_mask, \
dilated_shadow_mask=dilated_shadow_mask, gt=target_, shadow_mask_ = shadow_mask_, \
img_name=pic_name, shadowfree_img_=shadowfree_img_, background_object_mask_=background_object_mask_,\
background_shadow_mask_=background_shadow_mask_, object_mask_=object_mask_)