-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathON2D.m
187 lines (152 loc) · 5.66 KB
/
ON2D.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
function [rho,err] = ON2D(S,rho0,p,T,tau,chi2)
%
% Parameters -------------------------------------------------------------
L = p.L; dx = p.dx; dy = p.dy; saveInt = p.saveInt; p.chi2 = chi2;
p.T = T; p.tau = tau; numJKO = T/tau;
if tau > T; rho = []; err = 1; return; end
% Computational time step depending on the size of JKO step
if tau<=.01; p.dt = tau/5;
elseif tau> .01 && tau<=.1; p.dt = tau/10;
elseif tau> .1 && tau<= 1; p.dt = tau/50;
elseif tau> 1; p.dt = tau/100;
end
% Initialise
M = (floor(L/dx)-1)*(floor(L/dy)-1);
rho = zeros(M,floor((numJKO+1)/saveInt));
rho(:,1) = rho0(M,dx,dy);
rhoTemp = rho(:,1);
% Run
res = inf; k = 1; Jold = 0;
fprintf(2,'\n tau = %3.3f T = %3.1f --> START \n',tau,T);
while (k <= numJKO)% && (res(k)>delta)
k = k+1;
[rhoTemp,Jnew,~,err] = graddes2D(@V,@dV,rhoTemp,S,p);
%catch not converged solutions
if err == 1; break; end
%register every pth output
if rem(k-1,saveInt) == 0
rho(:,(k-1)/saveInt+1) = rhoTemp;
end
Jnew = min(Jnew);
res(k) = abs(Jold-Jnew);
fprintf(2,'\n JKO step %i | tau %3.2f | res = %5.3E | J = %5.3E \n',...
k-1,tau,res(k),Jnew);
Jold = Jnew;
end
fprintf(2,'\n tau = %3.1f T = %3.1f --> DONE! (error = %1.0f)\n',tau,T);
end
% Cost function ----------------------------------------------------------
function E = V(D,chi1,chi2,regFac1,X,Y,m,S)
regFac2 = 1e-5;
dx = X(1,2) - X(1,1); dy = Y(2,1) - Y(1,1);
dist = sqrt( ( meshgrid(X(:))' - meshgrid(X(:)) ).^2 ...
+ ( meshgrid(Y(:))' - meshgrid(Y(:)) ).^2 );
E = log(regFac2 + dist);
E = D*log(regFac2+m).*m ... %entropy
+ dx*dy*chi1*(E*m).*m ... %coupling
- chi2*S(X,Y).*m ... %environment
+ regFac1*.5*m.^2; %regularisation
end
% Derivative of cost function -------------------------------------------
function dE = dV(D,chi1,chi2,regFac1,X,Y,m,S)
regFac2 = 1e-5;
dx = X(1,2) - X(1,1); dy = Y(2,1) - Y(1,1);
dist = sqrt( ( meshgrid(X(:))' - meshgrid(X(:)) ).^2 ...
+ ( meshgrid(Y(:))' - meshgrid(Y(:)) ).^2 );
dE = log(regFac2 + dist);
dE = D*log(regFac2 + m) ... %entropy
+ dx*dy*chi1*(dE*m) ... %coupling
- chi2*S(X,Y) ... %%environment
+ regFac1*m; %regularisation
end
% Gradient descent scheme ------------------------------------------------
function [mtau,J,res,err] = graddes2D(V,dV,m0,S,p)
%parameters
L = p.L; dx = p.dx; dy = p.dy; dt = p.dt; tau = p.tau; D = p.D; chi1 = p.chi1;
chi2 = p.chi2; regFac = p.regFac; maxIt = p.maxIt; desStep = p.desStep;
deltaJKO = p.deltaJKO;
% Grid
x = -L/2:dx:L/2; Mx = length(x)-1;
y = -L/2:dy:L/2; My = length(y)-1;
[X,Y] = meshgrid(x(2:Mx),y(2:My));
M = (Mx-1)*(My-1);
t = 0:dt:tau; N = length(t); %time grid
mx = (Mx-2)*(My-1); my = (Mx-1)*(My-2); %staggered grid
% Matrices
%shift
Pn = coords(2:Mx-1, 1:My-1, Mx-1,My-1);
Ps = coords(1:Mx-2, 1:My-1, Mx-1,My-1);
Pe = coords(1:Mx-1, 2:My-1, Mx-1,My-1);
Pw = coords(1:Mx-1, 1:My-2, Mx-1,My-1);
% Averaging
tx = .5*(sparse(1:mx,Pn,ones(mx,1),mx,M) ...
+ sparse(1:mx,Ps,ones(1,mx),mx,M));
ty = .5*(sparse(1:my,Pe,ones(my,1),my,M) ...
+ sparse(1:my,Pw,ones(1,my),my,M));
% Difference
Dx = sparse(Pn,1:mx,ones(1,mx),M,mx) - sparse(Ps,1:mx,ones(1,mx),M,mx);
Dy = sparse(Pe,1:my,ones(1,my),M,my) - sparse(Pw,1:my,ones(1,my),M,my);
% Identity
I = sparse(1:M,1:M,ones(M,1),M,M);
% Initialise
vx = zeros(mx,N);
vy = zeros(my,N);
m = zeros(M,N); m(:,1) = m0;
adj = zeros(M,N);
J = zeros(1,maxIt);
res = zeros(1,maxIt+1);
% Iterations
uNew = inf; res(1) = inf; k = 1; err = 0;
while (k < maxIt) && (res(k) > deltaJKO)
uOld = uNew;
% Compute m^k+1
for j = 2:N
bx = sparse(1:mx,Pn,vx(:,j-1) < 0,mx,M) ...
+ sparse(1:mx,Ps,vx(:,j-1) >= 0,mx,M);
by = sparse(1:my,Pe,vy(:,j-1) < 0,my,M) ...
+ sparse(1:my,Pw,vy(:,j-1) >= 0,my,M);
Bx = dt/dx*Dx*diag(vx(:,j-1))*bx;
By = dt/dx*Dy*diag(vy(:,j-1))*by;
m(:,j) = (I + Bx + By)*m(:,j-1);
end
% Check positivity
if min(min(m))<0; fprintf(2,'Density is negative! tau %f',tau); err=1; break; end
% Check CFL
if max(max(vx))>=.8*dx/dt || max(max(vy))>=.8*dx/dt
error('\t CFL condition violated !! \n');
end
uNew = m(:,N);
adj(:,N) = -dV(D,chi1,chi2,regFac,X,Y,uNew,S);
% Compute adj^k+1
for j = N-1:-1:1
bx = sparse(1:mx,Pn,vx(:,j+1) < 0,mx,M) ...
+ sparse(1:mx,Ps,vx(:,j+1) >= 0,mx,M);
by = sparse(1:my,Pe,vy(:,j+1) < 0,my,M) ...
+ sparse(1:my,Pw,vy(:,j+1) >= 0,my,M);
Bx = dt/dx*Dx*diag(vx(:,j+1))*bx;
By = dt/dx*Dy*diag(vy(:,j+1))*by;
r = tx'*vx(:,j+1).^2 + ty'*vy(:,j+1).^2;
adj(:,j) = (I + Bx + By)'*adj(:,j+1) - .5*dt*r;
end
% Update v^k to v^(k+1)
vx = (Dx'*adj/dx + desStep*vx)/(1 + desStep);
vy = (Dy'*adj/dy + desStep*vy)/(1 + desStep);
% Cost function
J(k) = dx*dy*sum(sum(V(D,chi1,chi2,regFac,X,Y,m(:,N),S)));
res(k+1) = (dx*dy*sum(sum(abs(uNew-uOld).^2)))^.5; %L2 error
if k==1 %;fprintf(2,'It %i | J = %f \n',k,J(k));
else %fprintf(2,'It %i | J = %f|res=%f|dJ=%f \n',k,J(k),norm(uNew-uOld),J(k)-J(k-1));
if (J(k)-J(k-1))>0; fprintf(2,'dJ is positive! tau %f',tau); err=1; break; end
end
k = k+1;
if k == maxIt-1; fprintf(2,'Max. iterations reached! tau %f',tau); err=1; break; end
end
mtau = m(:,N);
end
% Get the coordinates in the array corresponding to the (i,j) element of
% the kxl matrix, (M-1)x(M-1) in our case
function coord = coords(i,j,k,l)
c = reshape(1:k*l,k,l);
coord = c(i,j);
coord = coord(:);
end