-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmultiscale_centrality.py
852 lines (620 loc) · 28.3 KB
/
multiscale_centrality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
import numpy as np
import scipy as sc
import networkx as nx
import pylab as plt
import pickle as pickle
import time
from tqdm import tqdm
import seaborn as sns
import scipy.stats as st
from fa2 import ForceAtlas2
from multiprocessing import Pool
from functools import partial
from matplotlib.colors import LogNorm
from matplotlib.ticker import LogFormatterMathtext
class Multiscale_Centrality(object):
"""
class to compute the multiscale centrality of a graph
"""
def __init__(self, G = [], pos = [], t_min = -2, t_max = 1, n_t = 100, log = True, target_nodes = [], n_processes = 2, precision = 1e-10, normalization_tpe = 'combinatorial', rw_tpe = 'continuous', alpha = 0.35, rev = False, node_labels = False):
"""
Initialisation function of this class
"""
if len(G)>0:
self.load_graph(G, pos)
self.figsize = None
self.labels = node_labels
self.plot_edges = True
self.n_processes = n_processes # number of cpus to use
self.precision = precision #machine precision threshold for the computation of expm
self.normalization_tpe = normalization_tpe #type of Laplacian, combinatorial or normalized
self.rw_tpe = rw_tpe #type of random walk, continuous or discrete
self.alpha = alpha # for discrete random walks
self.rev = rev #for directed graph, reverse flow or not (False/True)
self.time_spectral_gap = True #set to false for no time rescaling
#set the Markov time parameters
self.graph_Laplacian()
if self.time_spectral_gap:
print("Spectral gap = ", self.lamb_2)
#set time boundaries
self.t_min = t_min
self.t_max = t_max
self.disable_tqdm = False #set True to not show the tqdm progression bars
#compute the centrality measures only w.r.t to a subset of nodes in target_nodes
if len(target_nodes) == 0:
self.target_nodes = G.nodes()
self.node_mask = np.ones(len(G))
else:
self.target_nodes = target_nodes
self.node_mask = np.zeros(len(G))
self.node_mask[target_nodes] = 1
self.n_target = len(self.target_nodes)
#for discrete random walks, find the number of steps corresponding to the time
if self.rw_tpe == 'discrete':
self.n_t = int(self.t_max)+1
self.transition_matrix()
print('using', self.n_t, 'steps')
else:
self.n_t = n_t
#use log scaled time samples
self.log = log
if self.log:
self.Times = np.logspace(self.t_min, self.t_max, self.n_t) #time vector
else:
self.Times = np.linspace(self.t_min, self.t_max, self.n_t) #time vector
#which centrality to compare with
self.centralities_list = ['degree', 'eigenvector', 'closeness', 'betweenness',]#'katz', 'pagerank']#, 'force', ]
def load_graph(self, G, pos = []):
"""
load the network
"""
self.G = G
self.n = len(G.nodes)
self.m = len(G.edges)
#if no positions given, use force atlas
if len(pos) == 0:
forceatlas2 = ForceAtlas2(
# Tuning
scalingRatio=2,
strongGravityMode=False,
gravity=1,
outboundAttractionDistribution=False, # Dissuade hubs
# Log
verbose=False)
self.pos = forceatlas2.forceatlas2_networkx_layout(self.G, pos=None, iterations=2000)
else: #else use positions
self.pos = pos
def delta(self, i):
"""
return a delta initial condition
"""
p0 = np.zeros(self.n)
p0[i] = 1.
return p0
def graph_Laplacian(self):
"""
Compute the graph Laplacian with spectral gap normalisation
"""
if nx.is_directed(self.G):
if self.normalization_tpe == 'normalized':
print('Does not work!')
elif self.normalization_tpe == 'combinatorial':
L = sc.sparse.csc_matrix(np.array(directed_combinatorial_laplacian_matrix(self.G, walk_type='pagerank', alpha=0.85, rev = self.rev)))
v = np.array(abs(sc.sparse.linalg.eigs(L, which='SM', k=1)[1])).flatten() #stationary state
self.v = v/v.sum()
L_sub = L
else:
print('Not defined')
else:
if self.normalization_tpe == 'combinatorial':
L = sc.sparse.csr_matrix(1.*nx.laplacian_matrix(self.G)) #combinatorial Laplacian
self.v = np.ones(self.n)/self.n
elif self.normalization_tpe == 'normalized':
A = nx.adjacency_matrix(self.G).toarray()
degree = np.array(A.sum(1)).flatten()
self.v = degree/degree.sum()
L = sc.sparse.csr_matrix((np.diag(1./degree)).dot(nx.laplacian_matrix(self.G).toarray())) #combinatorial Laplacian
elif self.normalization_tpe == 'max_entropy':
A = nx.adjacency_matrix(self.G)
eigs = sc.sparse.linalg.eigsh(1.*A, which='LM', k=1)
lamb_0 = abs(eigs[0][0])
psi = eigs[1][:,0]
L = sc.sparse.csr_matrix(np.eye(self.n) - np.diag(psi).dot(A.toarray()).dot(np.diag(1./psi))/lamb_0)
self.v = psi**2
else:
print('Not defined!')
#compute the spectral gap of largest connected component
graphs = sorted(nx.connected_components(self.G), key=len, reverse=True)
if len(graphs)>1:
print('WARNING: graph not connected!')
L_sub = L[np.ix_(graphs[0].nodes,graphs[0].nodes)]
else:
L_sub = L
if self.time_spectral_gap:
self.lamb_2 = abs(sc.sparse.linalg.eigs(L_sub, which='SM', k=2)[0][1])
else:
self.lamb_2 = 1.
self.L = sc.sparse.csc_matrix(L)/self.lamb_2
def solve_continuous_time(self, p0):
"""
compute the exponential for a p0 initial condition
"""
if self.log:
#faster to apply exponential incrementally
p_t = []
p_t.append(sc.sparse.linalg.expm_multiply(-self.Times[0]*self.L, p0))
for i in range(len(self.Times)-1):
p_t.append(sc.sparse.linalg.expm_multiply(-(self.Times[i+1]-self.Times[i])*self.L, p_t[-1]))
else:
p_t = sc.sparse.linalg.expm_multiply(-self.L, p0, self.t_min, self.t_max, self.n_t)
return np.array(p_t)
def transition_matrix(self):
"""
compute discrete lazy walk transition matrices for normalized or combinatorial
"""
if nx.is_directed(self.G):
if self.rev: #again reverse order
A = sc.sparse.csr_matrix(_transition_matrix(self.G, walk_type='pagerank', alpha=0.85, rev = False))
else:
A = sc.sparse.csr_matrix(_transition_matrix(self.G, walk_type='pagerank', alpha=0.85, rev = True))
else:
A = nx.adjacency_matrix(self.G)
if self.normalization_tpe == 'combinatorial':
eigs = sc.sparse.linalg.eigs(1.*A, which='LM', k=1)
lamb_0 = abs(eigs[0][0])
v_0 = eigs[1][:,0]
T = A/lamb_0
elif self.normalization_tpe == 'min_entropy':
eigs = sc.sparse.linalg.eigs(1.*A, which='LM', k=1)
lamb_0 = abs(eigs[0][0])
psi = eigs[1][:,0]
T = sc.sparse.csr_matrix(np.diag(psi).dot(A.toarray()).dot(np.diag(1./psi))/lamb_0)
elif self.normalization_tpe == 'max_entropy':
eigs = sc.sparse.linalg.eigs(1.*A, which='LM', k=1)
lamb_0 = abs(eigs[0][0])
psi = eigs[1][:,0]
T = sc.sparse.csr_matrix(np.diag(1./psi).dot(A.toarray()).dot(np.diag(psi))/lamb_0)
elif self.normalization_tpe == 'normalized':
Dinv = sc.sparse.csr_matrix(np.diag(1./np.sqrt(np.array(A.sum(1).reshape(self.n))[0])))
T = Dinv.dot(A).dot(Dinv)
else:
print('Not defined!')
self.T = sc.sparse.csc_matrix((np.eye(self.n)*self.alpha + (1.-self.alpha)*T))
#compute the stationary solution
v = np.array(abs(sc.sparse.linalg.eigs(self.T, which='LM', k=1)[1])).flatten() #stationary state
self.v = v/v.sum()
def solve_discrete_time(self):
"""
compute the exponential for a p0 initial condition
"""
Ts = [self.T.todense(), ]
Ts_last = self.T #save sparse matrices for faster computations
for i in range(self.n_t-1):
T_new = self.T.dot(Ts_last)
Ts.append(T_new.toarray())
Ts_last = T_new.copy()
return np.array(Ts)
def compute_trajectories(self, p0):
"""
Compute the node trajectories from a source p0
"""
if self.rw_tpe == 'discrete':
return self.solve_discrete_time().dot(p0)
if self.rw_tpe == 'continuous':
return self.solve_continuous_time(p0)
def compute_peak_distance(self, p_t):
"""
Compute the multiscale centrality vector of node with diffusion trajectories p_t
"""
distances = [] #np.zeros([self.n, self.n_t]) #empty distance matrix
for tau in range(self.n_t): #for each tau
#id_reachable = np.argwhere((p_t[:tau+1]*self.node_mask).max(0) > self.v + self.precision).flatten() #find reachable nodes
id_reachable = np.argwhere((p_t[:tau+1]).max(0) > self.v + self.precision).flatten() #find reachable nodes
distance = (self.t_max + 1e8)*np.ones(self.n) #set the distance to unreachable to all: (t_max+1)
distance[id_reachable] = self.Times[np.argmax(p_t[:tau+1, id_reachable], axis=0)] #set the time for reachable nodes
distances.append(distance) #collect the distance
return distances
def compute_multiscale_centrality(self, pair_distances):
"""
Compute the multiscale centrality vector of node with diffusion trajectories p_t
"""
args = [self.n, self.target_nodes, self.precision]
compute_triangle_pool_p = partial(compute_triangle_pool, args)
with Pool(processes = self.n_processes) as p_tri: #initialise the parallel computation
out = list(tqdm(p_tri.imap(compute_triangle_pool_p, pair_distances), total = self.n_t, disable=self.disable_tqdm))
triangles = np.zeros([self.n, self.n_t])
for tau in range(self.n_t): #for each tau
triangles[:,tau] = out[tau]
return triangles
def compute_centrality_pool(self, i):
if self.rw_tpe == 'continuous':
p_t = self.solve_continuous_time(self.delta(i))
if self.rw_tpe == 'discrete':
p_t = np.array(self.Ts[:, i])
pair_distances = self.compute_peak_distance(p_t)
return pair_distances
def compute_multiscale_centralities(self):
"""
compute reachability and multiscale centrality
"""
if self.rw_tpe == 'continuous':
self.graph_Laplacian() # compute the graph Laplacian first
if self.rw_tpe == 'discrete':
self.transition_matrix()
self.Ts = self.solve_discrete_time()
with Pool(processes = self.n_processes) as p_uc: #initialise the parallel computation
out = list(tqdm(p_uc.imap(self.compute_centrality_pool,
self.target_nodes),
total = self.n_target,
disable=self.disable_tqdm))
self.out = out
self.pair_distances = np.zeros([self.n_t, self.n, self.n])
for i,node in enumerate(self.target_nodes):
self.pair_distances[:, node, :] = np.array(out[i])
if self.n_target < len(self.G):
for t in range(self.n_t):
self.pair_distances[t, :, :] = np.maximum( self.pair_distances[t, :, :], self.pair_distances[t, :, :].T )
self.multiscale = self.compute_multiscale_centrality(self.pair_distances)
def plot_multiscale_centrality(self, tau, node_size = 200):
"""
plot the multiscale centrality for a given tau
"""
plt.figure(figsize = self.figsize)
vmin = 0
vmax = 1
node_size = self.multiscale[:, tau]/np.max(self.multiscale[:, tau])*node_size
node_order = np.argsort(node_size)
for n in node_order:
nodes = nx.draw_networkx_nodes(self.G, pos = self.pos, nodelist = [n,], node_size = node_size[n], node_color=[self.multiscale[n, tau]/np.max(self.multiscale[:, tau]),], vmin=vmin, vmax=vmax)
if self.n_target < len(self.G):
nodes = nx.draw_networkx_nodes(self.G, nodelist=self.target_nodes, pos = self.pos, node_size = node_size/3, node_color='r')
if self.plot_edges:
#weights = np.array([self.G[i][j]['weight'] for i,j in self.G.edges])
nx.draw_networkx_edges(self.G, pos = self.pos, alpha=0.5)# ,width = 2*weights)
if self.labels:
old_labels={}
for i in self.G:
old_labels[i] = self.G.node[i]['old_label']
nx.draw_networkx_labels(self.G, pos = self.pos, labels = old_labels)
limits = plt.axis('off') #turn axis odd
def video_multiscale(self, n_plot = 10, folder = 'images_multiscale', node_size = 200):
"""
plot the multiscale centrality for all tau
"""
if n_plot > self.n_t-1:
n_plot = self.n_t-1
dtau = int((self.n_t)/n_plot)
for i in tqdm(range(n_plot), disable=self.disable_tqdm):
tau = i*dtau
self.plot_multiscale_centrality(tau, node_size = node_size)
if self.log:
plt.title(r'$log_{10}(\tau)=$'+str(np.around(np.log10(self.Times[tau]),2)))
else:
plt.title(r'$\tau=$'+str(np.around(self.Times[tau],2)))
plt.savefig(folder + '/multiscale_' + '%0.3d' % i + '.svg')
plt.close()
def plot_trajectories(self):
"""
Plot the multiscale centrality of each node as a function of scale
"""
plt.figure(figsize=self.figsize)
for i in range(np.shape(self.multiscale)[1]):
self.multiscale[:,i] /= np.max(self.multiscale[:,i])
for i in range(len(self.multiscale)):
plt.semilogx(self.Times, self.multiscale[i], lw=0.5, alpha=1.0, c='0.5')
#highlight central nodes at small and large scales
for i in range(len(self.multiscale)):
if i == np.argmax(self.multiscale[:,0],axis=0):
plt.semilogx(self.Times, self.multiscale[i], lw=3.0, c='b')
if i == np.argmax(self.multiscale[:,-1],axis=0):
plt.semilogx(self.Times, self.multiscale[i], lw=3.0, c='r')
plt.axis([self.Times[0], self.Times[-1], 0,1.05])
plt.xlabel(r'$\tau$')
plt.ylabel('Normalized Multiscale centrality')
plt.axis([self.Times[0], self.Times[-1], -0.02,1.02])
plt.savefig('multiscale_trajectories.svg', bbox_inches="tight")
plt.close()
def other_centralities(self, n_force = 20, c = 0):
C = [] #to collect the centralities
for centrality in self.centralities_list:
if centrality == 'force':
"find node position with force atlas, and distance to the center is the centrality"
forceatlas2 = ForceAtlas2(
# Tuning
scalingRatio=2.0,
strongGravityMode=False,
gravity=1.0,
# Log
verbose=False)
pos = forceatlas2.forceatlas2_networkx_layout(self.G, pos=None, iterations=2000)
c = np.linalg.norm(np.array(list(pos.values())),axis=1)
for i in range(n_force-1):
pos = forceatlas2.forceatlas2_networkx_layout(self.G, pos=None, iterations=2000)
c += np.linalg.norm(np.array(list(pos.values())), axis=1)
c = -c/n_force
elif centrality == 'degree':
#degree centrality
c = list(nx.degree_centrality(self.G).values())
elif centrality == 'eigenvector':
#eigenvector centrality
try:
c = list(nx.eigenvector_centrality_numpy(self.G).values())
except:
print(centrality + 'failed computation')
c = np.zeros(self.n)
elif centrality == 'katz':
#katz centrality
try:
print('alpha (Kac)=', 1./np.max(np.linalg.eigh(nx.adjacency_matrix(self.G).toarray())[0]))
alpha = 1./np.max(np.linalg.eigh(nx.adjacency_matrix(self.G).toarray())[0]) - 5e-3
c = list(nx.katz_centrality(self.G, alpha=alpha).values())
except:
c = list(nx.katz_centrality(self.G, max_iter = 1000, tol=1e-3).values())
print(centrality + ' failed computation')
c = np.zeros(self.n)
elif centrality == 'closeness':
#closeness centrality
c = list(nx.closeness_centrality(self.G).values())
elif centrality == 'betweenness':
#betweenness centrality
c = list(nx.betweenness_centrality(self.G).values())
elif centrality == 'pagerank':
#betweenness centrality
c = list(nx.pagerank(self.G, alpha = 1).values())
elif centrality == 'other':
c = c
else:
print("I don't know this one!")
C.append(c)
return C
def compare_centralities_spearman(self, n_compare, n_force = 10):
"""
compare the centrality measures using spearman correlation
"""
plot = False
disp = False
C = self.other_centralities()
if n_compare > self.n_t-1:
n_compare = self.n_t-1
n_compare = self.n_t
spearman_multiscale = np.zeros([n_compare, len(C)]) #to collect the pearson coefficients for multiscale
for i in range(n_compare):
for ic, centrality in enumerate(self.centralities_list):
tri = self.multiscale[:, i]
spearman_multiscale[i,ic] = st.spearmanr(tri, C[ic])[0]
spearman_multiscale[np.isnan(spearman_multiscale)] = 0 #set nan values to 0
self.spearman_multiscale = spearman_multiscale
def compare_centralities(self, n_compare, n_top, n_force = 10):
"""
compute all the centralities comparisons
"""
self.compare_centralities_spearman(n_compare, n_force)
def save_comparisons(self, folder = ''):
"""
save comparison data
"""
pickle.dump([self.centralities_list, self.spearman_multiscale], open(folder + 'uc_multiscale_comparisons.pkl','wb'))
def load_comparisons(self, folder = ''):
"""
load comparison data
"""
self.centralities_list, self.spearman_multiscale = pickle.load( open(folder + 'uc_multiscale_comparisons.pkl','rb'))
def plot_comparisons_spearman(self, folder = ''):
"""
plot the comparison between reachability/multiscale centrality with other centrality measures
"""
plt.figure(figsize = self.figsize)
for i, centrality in enumerate(self.centralities_list):
if self.log:
plt.semilogx(self.Times, self.spearman_multiscale[:,i], label=centrality)
else:
plt.plot(self.Times, self.spearman_multiscale[:,i], label=centrality)
plt.legend(loc='lower right')
plt.xlabel(r'$\tau$')
plt.ylabel(r'$\mathrm{Spearman\, correlation}$')
plt.axis([self.Times[0], self.Times[-1], np.min(self.spearman_multiscale) , 1])
plt.savefig(folder+'multiscale_spearman.svg', bbox_inches="tight" )
def save_centralities(self, folder = ''):
"""
save the results in a pickle
"""
pickle.dump(self.multiscale, open(folder + 'uc_results.pkl','wb'))
def load_centralities(self, folder = ''):
"""
load the results from a pickle
"""
self.multiscale = pickle.load(open(folder + 'uc_results.pkl','rb'))
####################################
## functions from latest networkx ##
####################################
def directed_laplacian_matrix(G, nodelist=None, weight='weight',
walk_type=None, alpha=0.95, rev = False):
r"""Returns the directed Laplacian matrix of G.
The graph directed Laplacian is the matrix
.. math::
L = I - (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} ) / 2
where `I` is the identity matrix, `P` is the transition matrix of the
graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and
zeros elsewhere.
Depending on the value of walk_type, `P` can be the transition matrix
induced by a random walk, a lazy random walk, or a random walk with
teleportation (PageRank).
Parameters
----------
G : DiGraph
A NetworkX graph
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().
weight : string or None, optional (default='weight')
The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.
walk_type : string or None, optional (default=None)
If None, `P` is selected depending on the properties of the
graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
alpha : real
(1 - alpha) is the teleportation probability used with pagerank
Returns
-------
L : NumPy array
Normalized Laplacian of G.
Notes
-----
Only implemented for DiGraphs
See Also
--------
laplacian_matrix
References
----------
.. [1] Fan Chung (2005).
Laplacians and the Cheeger inequality for directed graphs.
Annals of Combinatorics, 9(1), 2005
"""
import scipy as sp
from scipy.sparse import spdiags, linalg
P = _transition_matrix(G, nodelist=nodelist, weight=weight,
walk_type=walk_type, alpha=alpha, rev = rev)
n, m = P.shape
evals, evecs = linalg.eigs(P.T, k=1)
v = evecs.flatten().real
p = v / v.sum()
sqrtp = sp.sqrt(p)
Q = spdiags(sqrtp, [0], n, n) * P * spdiags(1.0 / sqrtp, [0], n, n)
I = sp.identity(len(G))
return I - (Q + Q.T) / 2.0
def directed_combinatorial_laplacian_matrix(G, nodelist=None, weight='weight',
walk_type=None, alpha=0.95, rev = False):
r"""Return the directed combinatorial Laplacian matrix of G.
The graph directed combinatorial Laplacian is the matrix
.. math::
L = \Phi - (\Phi P + P^T \Phi) / 2
where `P` is the transition matrix of the graph and and `\Phi` a matrix
with the Perron vector of `P` in the diagonal and zeros elsewhere.
Depending on the value of walk_type, `P` can be the transition matrix
induced by a random walk, a lazy random walk, or a random walk with
teleportation (PageRank).
Parameters
----------
G : DiGraph
A NetworkX graph
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().
weight : string or None, optional (default='weight')
The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.
walk_type : string or None, optional (default=None)
If None, `P` is selected depending on the properties of the
graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
alpha : real
(1 - alpha) is the teleportation probability used with pagerank
Returns
-------
L : NumPy array
Combinatorial Laplacian of G.
Notes
-----
Only implemented for DiGraphs
See Also
--------
laplacian_matrix
References
----------
.. [1] Fan Chung (2005).
Laplacians and the Cheeger inequality for directed graphs.
Annals of Combinatorics, 9(1), 2005
"""
from scipy.sparse import spdiags, linalg
P = _transition_matrix(G, nodelist=nodelist, weight=weight,
walk_type=walk_type, alpha=alpha, rev = rev)
n, m = P.shape
evals, evecs = linalg.eigs(P.T, k=1)
v = evecs.flatten().real
p = v / v.sum()
Phi = spdiags(p, [0], n, n)
Phi = Phi.todense()
return Phi - (Phi*P + P.T*Phi) / 2.0
def _transition_matrix(G, nodelist=None, weight='weight',
walk_type=None, alpha=0.95, rev = False):
"""Returns the transition matrix of G.
This is a row stochastic giving the transition probabilities while
performing a random walk on the graph. Depending on the value of walk_type,
P can be the transition matrix induced by a random walk, a lazy random walk,
or a random walk with teleportation (PageRank).
Parameters
----------
G : DiGraph
A NetworkX graph
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().
weight : string or None, optional (default='weight')
The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.
walk_type : string or None, optional (default=None)
If None, `P` is selected depending on the properties of the
graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
alpha : real
(1 - alpha) is the teleportation probability used with pagerank
Returns
-------
P : NumPy array
transition matrix of G.
Raises
------
NetworkXError
If walk_type not specified or alpha not in valid range
"""
import scipy as sp
from scipy.sparse import identity, spdiags
if walk_type is None:
if nx.is_strongly_connected(G):
if nx.is_aperiodic(G):
walk_type = "random"
else:
walk_type = "lazy"
else:
walk_type = "pagerank"
M = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight,
dtype=float)
if not rev:
M = M.T
n, m = M.shape
if walk_type in ["random", "lazy"]:
DI = spdiags(1.0 / sp.array(M.sum(axis=1).flat), [0], n, n)
if walk_type == "random":
P = DI * M
else:
I = identity(n)
P = (I + DI * M) / 2.0
elif walk_type == "pagerank":
if not (0 < alpha < 1):
raise nx.NetworkXError('alpha must be between 0 and 1')
# this is using a dense representation
M = M.todense()
# add constant to dangling nodes' row
dangling = sp.where(M.sum(axis=1) == 0)
for d in dangling[0]:
M[d] = 1.0 / n
# normalize
M = M / M.sum(axis=1)
P = alpha * M + (1 - alpha) / n
else:
raise nx.NetworkXError("walk_type must be random, lazy, or pagerank")
return P
########## ###################
## multiprocessing function ##
##############################
def compute_triangle_pool(args, pair_distances):
"""
Compute the triangle inequalities for multiprocessing
"""
n, target_nodes, precision = args
pair_distances = np.array(pair_distances)
triangles = np.zeros(n)
for i in range(n):
dij = np.tile(pair_distances[i, :], n).reshape( (n, n))
dist = dij + dij.T - 0.5*(pair_distances + pair_distances) #average on the last term for directed graph (not needed for un-directed)
dist = dist[np.ix_(target_nodes, target_nodes)]
triangles[i] = len(np.argwhere(dist < -precision)) / len(target_nodes)**2
return triangles