-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfft_pca_mlp.py
117 lines (105 loc) · 4.62 KB
/
fft_pca_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os.path
import sys
import numpy as np
from keras.models import Model, Sequential
from keras.layers import Flatten, Dense, Input, BatchNormalization
from keras.engine.topology import get_source_inputs
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_input
from keras.optimizers import RMSprop
from keras.callbacks import ModelCheckpoint
from keras.utils import to_categorical
from keras.models import load_model
from sklearn.decomposition import PCA
from keras.layers import Dropout
import random
from sklearn.externals import joblib
from scipy.fftpack import fft,ifft
import matplotlib.pyplot as plt
from ann_visualizer.visualize import ann_viz
from keras.utils import plot_model
from scipy.fftpack import fft,ifft
sbox=(
0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16)
hw = [bin(x).count("1") for x in range(256)]
model = Sequential()
model.add(Dense(256, input_dim=600, activation='relu'))
model.add(Dropout(0.8,seed=random.randint(0,99)))
#model.add(BatchNormalization())
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.5,seed=random.randint(0,99)))
#model.add(BatchNormalization())
model.add(Dense(9, activation='softmax'))
optimizer = RMSprop(lr=0.001)
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
tempTraces = np.load('./train/traces.npy')
tempPText = np.load('./train/textin.npy')
tempKey = np.load('./train/keylist.npy')
tempSbox = [sbox[tempPText[i][0] ^ tempKey[i][0]] for i in range(len(tempPText))]
tempHW = [hw[s] for s in tempSbox]
atkTraces = np.load("./test/2019.04.03-14.47.53_traces.npy")
atkPText = np.load("./test/2019.04.03-14.47.53_textin.npy")
atkKey = np.load("./test/2019.04.03-14.47.53_keylist.npy")
atkSbox = [sbox[atkPText[i][0] ^ atkKey[i][0]] for i in range(len(atkPText))]
atkHW = [hw[s] for s in atkSbox]
tempTraces = abs(fft(tempTraces))
atkTraces = abs(fft(atkTraces))
print("开始PCA降维")
pca = PCA(n_components=600)
pca.fit(tempTraces)
joblib.dump(pca, "./PCAfft_for_mlp.m")
'''
pca = joblib.load("./PCAfft_for_mlp.m")
'''
tempTraces = pca.transform(tempTraces)
print("完成PCA")
print(tempTraces.shape)
atkTraces = pca.transform(atkTraces)
history = model.fit(tempTraces, to_categorical(tempHW), epochs=60, batch_size=16,validation_split=0.05)
loss_and_metrics = model.evaluate(atkTraces, to_categorical(atkHW,num_classes=9), batch_size=128)
#print(model.predict(atkTraces))
guss = model.predict(atkTraces)
a = np.zeros(100)
for i in range(100):
a[i] = abs(np.argmax(guss[i,:]) - atkHW[i])
print("差值数组为:"+str(a))
print("测试集正确率为:"+str(loss_and_metrics[1]))
right = 0
for i in range(100):
if a[i] == 0:
right = right + 1
print("汉明重量正确的有"+str(right)+"个")
plot_model(model,show_shapes=True,to_file='fft_model.png')
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
# 绘制训练 & 验证的损失值
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()