-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlogic.py
130 lines (105 loc) · 3.67 KB
/
logic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
import fitz
from PIL import Image
# Global variables
count = 0
n = 0
chat_history = []
chain = ''
# Function to set the OpenAI API key
def set_api_key(api_key):
"""
Sets the OpenAI API key in the environment variable.
Args:
api_key (str): The OpenAI API key.
Returns:
str: Message indicating the API key is set.
"""
os.environ['OPENAI_API_KEY'] = api_key
return 'OpenAI API key is set'
# Function to enable the API key input box
def enable_api_box():
"""
Enables the API key input box.
Returns:
None
"""
return
# Function to add text to the chat history
def add_text(history, text):
"""
Adds the user's input text to the chat history.
Args:
history (list): List of tuples representing the chat history.
text (str): The user's input text.
Returns:
list: Updated chat history with the new user input.
"""
if not text:
raise gr.Error('Enter text')
history.append((text, ''))
return history
# Function to process the PDF file and create a conversation chain
def process_file(file):
"""
Processes the uploaded PDF file and creates a conversational retrieval chain.
Args:
file (FileStorage): The uploaded PDF file.
Returns:
ConversationalRetrievalChain: The created conversational retrieval chain.
"""
if 'OPENAI_API_KEY' not in os.environ:
raise gr.Error('Upload your OpenAI API key')
loader = PyPDFLoader(file.name)
documents = loader.load()
embeddings = OpenAIEmbeddings()
pdf_search = Chroma.from_documents(documents, embeddings)
chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
retriever=pdf_search.as_retriever(search_kwargs={"k": 1}),
return_source_documents=True)
return chain
# Function to generate a response based on the chat history and query
def generate_response(history, query, btn):
"""
Generates a response based on the chat history and user's query.
Args:
history (list): List of tuples representing the chat history.
query (str): The user's query.
btn (FileStorage): The uploaded PDF file.
Returns:
tuple: Updated chat history with the generated response and the next page number.
"""
global count, n, chat_history, chain
if not btn:
raise gr.Error(message='Upload a PDF')
if count == 0:
chain = process_file(btn)
count += 1
result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
chat_history.append((query, result["answer"]))
n = list(result['source_documents'][0])[1][1]['page']
for char in result['answer']:
history[-1][-1] += char
return history, " "
# Function to render a specific page of a PDF file as an image
def render_file(file):
"""
Renders a specific page of a PDF file as an image.
Args:
file (FileStorage): The PDF file.
Returns:
PIL.Image.Image: The rendered page as an image.
"""
global n
doc = fitz.open(file.name)
page = doc[n]
# Render the page as a PNG image with a resolution of 300 DPI
pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72))
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
return image