-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathExploratory_Project_Mamogram.py
285 lines (216 loc) · 7.65 KB
/
Exploratory_Project_Mamogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# coding: utf-8
# In[1]:
from skimage import io
from skimage.viewer import ImageViewer
import pandas as pd
from sklearn import linear_model
import math
import numpy as np
import skimage
from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier,AdaBoostClassifier
from sklearn import cross_validation
from sklearn import svm
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
import copy
# In[4]:
path1 = "/media/ayush/New Volume/ML/project/TA/Final_Dataset/"
path2 = "/media/ayush/New Volume/ML/project/final_results/"
img_data = pd.read_csv(path1+'Final_data.csv',header=None)
img_data = img_data[:]
data_size = img_data.shape[0]
img_data.head()
# In[5]:
def get_glcm_features(angle_code, dist,Z): ## angle_code 0-->1, 45-->2, 90-->3, 135-->4, 180-->5
X=copy.deepcopy(Z)
fa1,fb1,fc1,fd1 = np.zeros(data_size),np.zeros(data_size),np.zeros(data_size),np.zeros(data_size)
img_name = list(img_data[0])
for i in range(len(img_data)) :
name = str(img_name[i])+".pgm"
I = io.imread(path1+name)
if angle_code==1:
glcm = skimage.feature.greycomatrix(I, [dist], [0], normed=True)
elif angle_code==2:
glcm = skimage.feature.greycomatrix(I, [dist], [-dist], normed=True)
elif angle_code==3:
glcm = skimage.feature.greycomatrix(I, [0], [-dist], normed=True)
elif angle_code==4:
glcm = skimage.feature.greycomatrix(I, [-dist], [-dist], normed=True)
elif angle_code==5:
glcm = skimage.feature.greycomatrix(I, [-dist], [0], normed=True)
fa1[i] = skimage.feature.greycoprops(glcm, 'contrast')[0][0]
fb1[i] = skimage.feature.greycoprops(glcm, 'energy')[0][0]
fc1[i] = skimage.feature.greycoprops(glcm, 'homogeneity')[0][0]
fd1[i] = skimage.feature.greycoprops(glcm, 'correlation')[0][0]
X['contrast_ang'+str(angle_code)+'_d'+str(dist)],X['energy_ang'+str(angle_code)+'_d'+str(dist)],X['homogeneity_ang'+str(angle_code)+'_d'+str(dist)],X['correlation_ang'+str(angle_code)+'_d'+str(dist)]=fa1,fb1,fc1,fd1
return X
# In[6]:
def indices_list(l) :
scores = zip(range(len(l)),l)
scores = sorted(scores, key=lambda a:a[1])
scores = scores[::-1]
scores = map(lambda x:x[0],scores)
indices = scores[:4]
return indices
# In[22]:
def get_accuracy_cvset2(model,x_train,x_test,y_train,y_test) :
model.fit(x_train,y_train)
ypred = model.predict(x_test)
y_test=np.array(y_test)
mis=0
for i in range(len(ypred)) : mis += abs(ypred[i]-y_test[i])
#print len(ypred[ypred==1])
#return (len(ypred)-mis)/(len(ypred)+0.00)
conf_mtr = confusion_matrix(y_test, ypred)
accu = float(conf_mtr[0][0]+conf_mtr[1][1])/(len(ypred))
sens = float(conf_mtr[1][1])/float(conf_mtr[1][0]+conf_mtr[1][1])
spec = float(conf_mtr[0][0])/float(conf_mtr[0][0]+conf_mtr[0][1])
return (accu,sens,spec,conf_mtr,ypred)
# In[8]:
def get_accuracy_cvset(model,x_train,x_test,y_train,y_test) :
model.fit(x_train,y_train)
ypred = model.predict(x_test)
y_test=np.array(y_test)
mis=0
for i in range(len(ypred)) : mis += abs(ypred[i]-y_test[i])
#print len(ypred[ypred==1])
return (len(ypred)-mis)/(len(ypred)+0.00)
# In[9]:
def get_accuracy(X,y,trees) :
model = RandomForestClassifier(n_estimators=trees)
return cross_validation.cross_val_score(model,X,y,cv=5).mean()
# In[10]:
Y = img_data[3].apply(lambda x : 0 if x=='N' else 1)
X = pd.DataFrame()
X2 = pd.DataFrame()
L=[]
for i in range(1,4) :
l=[]
for j in range(1,30) :
X = get_glcm_features(i,j,pd.DataFrame())
X2 = get_glcm_features(i,j,X2)
l.append(get_accuracy(X,Y,100))
L.append(l)
# In[63]:
# plt.xlim(0,31)
# plt.ylim(40,100)
# plt.xlabel("Pixel Distance in(px)")
# plt.ylabel("Accuracy in(%)")
# plt.xticks(np.arange(0,31,5))
# for i in range(len(L)):
# if(i==0):
# plt.plot(range(1,30),L[i],label='$%i^\circ$'%0,linestyle='--')
# if(i==1):
# plt.plot(range(1,30),L[i],label='$%i^\circ$'%45,linewidth='2')
# if(i==2):
# plt.plot(range(1,30),L[i],label='$%i^\circ$'%90,color='y')
# plt.scatter(range(1,30),L[i],facecolors='r')
# #plt.annotate(str(i+1), xy=(i+10, L[i][i+10]), xytext=(i+10, L[i][i+10]))
# plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1),
# ncol=3, fancybox=True, shadow=True)
# plt.show()
# In[11]:
X = pd.DataFrame()
for i in range(1,4):
indices = indices_list(L[i-1])
for j in indices:
X = get_glcm_features(i,j+1,X)
print get_accuracy(X,Y,100)
X.head()
# In[12]:
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X,Y, test_size=0.25,random_state=3)
# In[13]:
from sklearn.tree import ExtraTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
model6 = AdaBoostClassifier(n_estimators=500)
model6.fit(X_train,y_train)
x = 100*model6.feature_importances_+0.1
print x
# In[14]:
plt.bar(range(X.shape[1]), x)
plt.xticks(np.arange(0,51,5))
plt.xlabel("Features")
# plt.ylim()
plt.xlim(0,50)
plt.ylabel("Feature score")
plt.show()
# In[15]:
feature_threshold=6
Q=X_train.iloc[:,x>=feature_threshold]
print Q.shape
Q.head()#graph analysis
# In[53]:
from sklearn.decomposition import PCA
#X_train, X_test, y_train, y_test = cross_validation.train_test_split(X,Y, test_size=0.5,random_state=3)
#X_test=X
#y_test=Y
Qtrain=X_train.iloc[:,x>=feature_threshold]
Qtest=X_test.iloc[:,x>=feature_threshold]
pca = PCA(n_components=15).fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
model = GradientBoostingClassifier(n_estimators=100)
model2 = RandomForestClassifier(n_estimators=100)
print get_accuracy_cvset(model,X_train_pca,X_test_pca,y_train,y_test)
print get_accuracy_cvset(model,X_train,X_test,y_train,y_test)
print get_accuracy_cvset(model,Qtrain,Qtest,y_train,y_test)
print("rf")
print get_accuracy_cvset(model2,X_train_pca,X_test_pca,y_train,y_test)
print get_accuracy_cvset(model2,X_train,X_test,y_train,y_test)
print get_accuracy_cvset(model2,Qtrain,Qtest,y_train,y_test)
# In[58]:
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train,y_train)
ypred = model.predict(X_test)
y_test=np.array(y_test)
mis=0
for i in range(len(ypred)) : mis += abs(ypred[i]-y_test[i])
#print len(ypred[ypred==1])
print (len(ypred)-mis)/(len(ypred)+0.00)
# In[17]:
scores = zip(range(len(x)),x)
scores = sorted(scores, key=lambda a:a[1])
scores = scores[::-1]
scores = map(lambda x:x[0],scores)
# In[23]:
accu_no=[]
spec_no=[]
sens_no=[]
conf_no=[]
ypred_no=[]
mx=0
for i in range(1,len(scores)+1):
Qtrain=X_train.iloc[:,scores[:i]]
Qtest=X_test.iloc[:,scores[:i]]
model2 = RandomForestClassifier(n_estimators=100)
accu,sens,spec,conf,ypred=get_accuracy_cvset2(model2,Qtrain,Qtest,y_train,y_test)
conf_no.append(conf)
accu_no.append(accu)
sens_no.append(sens)
spec_no.append(spec)
ypred_no.append(ypred)
mx=max(mx,accu)
print mx
# In[24]:
for i in range(len(accu_no)):
accu_no[i]=100*accu_no[i]
spec_no[i]=100*spec_no[i]
sens_no[i]=100*sens_no[i]
# In[40]:
plt.xlabel("Number of features")
plt.xlim(0,50)
plt.ylim(50,101)
plt.ylabel("Accuracy in (%)")
plt.yticks(np.arange(50, 101,5))
plt.xticks(np.arange(0, 51,5))
plt.scatter(range(1,len(scores)+1),accu_no[:],facecolors='r')
plt.plot(range(1,len(scores)+1),accu_no)
# plt.scatter(range(1,len(scores)+1),spec_no,facecolors='r')
# plt.plot(range(1,len(scores)+1),spec_no,'y')
# plt.scatter(range(1,len(scores)+1),sens_no,facecolors='r')
# plt.plot(range(1,len(scores)+1),sens_no,'g')
plt.show()
# In[62]:
#zip(range(1,1+len(accu_no)),accu_no,sens_no,spec_no)