-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathpdbbind.py
376 lines (337 loc) · 18.8 KB
/
pdbbind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# -*- coding: utf-8 -*-
#
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
#
# PDBBind dataset processed by moleculenet.
import dgl.backend as F
import numpy as np
import multiprocessing
import os
import glob
from functools import partial
import pandas as pd
from dgl.data.utils import get_download_dir, download, _get_dgl_url, extract_archive
from ..utils import multiprocess_load_molecules, ACNN_graph_construction_and_featurization, PN_graph_construction_and_featurization
__all__ = ['PDBBind']
class PDBBind(object):
"""PDBbind dataset processed by moleculenet.
The description below is mainly based on
`[1] <https://pubs.rsc.org/en/content/articlelanding/2018/sc/c7sc02664a#cit50>`__.
The PDBBind database consists of experimentally measured binding affinities for
bio-molecular complexes `[2] <https://www.ncbi.nlm.nih.gov/pubmed/?term=15163179%5Buid%5D>`__,
`[3] <https://www.ncbi.nlm.nih.gov/pubmed/?term=15943484%5Buid%5D>`__. It provides detailed
3D Cartesian coordinates of both ligands and their target proteins derived from experimental
(e.g., X-ray crystallography) measurements. The availability of coordinates of the
protein-ligand complexes permits structure-based featurization that is aware of the
protein-ligand binding geometry. The authors of
`[1] <https://pubs.rsc.org/en/content/articlelanding/2018/sc/c7sc02664a#cit50>`__ use the
"refined" and "core" subsets of the database
`[4] <https://www.ncbi.nlm.nih.gov/pubmed/?term=25301850%5Buid%5D>`__, more carefully
processed for data artifacts, as additional benchmarking targets.
References:
* [1] moleculenet: a benchmark for molecular machine learning
* [2] The PDBbind database: collection of binding affinities for protein-ligand complexes
with known three-dimensional structures
* [3] The PDBbind database: methodologies and updates
* [4] PDB-wide collection of binding data: current status of the PDBbind database
Parameters
----------
subset : str
In moleculenet, we can use either the "refined" subset or the "core" subset. We can
retrieve them by setting ``subset`` to be ``'refined'`` or ``'core'``. The size
of the ``'core'`` set is 195 and the size of the ``'refined'`` set is 3706.
pdb_version : str
The version of PDBBind dataset. Currently implemented: ``'v2007'``, ``'v2015'``.
Default to ``'v2015'``. User should not specify the version if using local PDBBind data.
load_binding_pocket : bool
Whether to load binding pockets or full proteins. Default to True.
remove_coreset_from_refinedset: bool
Whether to remove core set from refined set when training with refined set and test with core set.
Default to True.
sanitize : bool
Whether sanitization is performed in initializing RDKit molecule instances. See
https://www.rdkit.org/docs/RDKit_Book.html for details of the sanitization.
Default to False.
calc_charges : bool
Whether to add Gasteiger charges via RDKit. Setting this to be True will enforce
``sanitize`` to be True. Default to False.
remove_hs : bool
Whether to remove hydrogens via RDKit. Note that removing hydrogens can be quite
slow for large molecules. Default to False.
use_conformation : bool
Whether we need to extract molecular conformation from proteins and ligands.
Default to True.
construct_graph_and_featurize : callable
Construct a DGLGraph for the use of GNNs. Mapping ``self.ligand_mols[i]``,
``self.protein_mols[i]``, ``self.ligand_coordinates[i]`` and
``self.protein_coordinates[i]`` to a DGLGraph.
Default to :func:`dgllife.utils.ACNN_graph_construction_and_featurization`.
zero_padding : bool
Whether to perform zero padding. While DGL does not necessarily require zero padding,
pooling operations for variable length inputs can introduce stochastic behaviour, which
is not desired for sensitive scenarios. Default to True.
num_processes : int or None
Number of worker processes to use. If None,
then we will use the number of CPUs in the system. Default None.
local_path : str or None
Local path of existing PDBBind dataset.
Default None, and PDBBind dataset will be downloaded from DGL database.
Specify this argument to a local path of customized dataset, which should follow the structure and the naming format of PDBBind v2015.
"""
def __init__(self, subset, pdb_version='v2015', load_binding_pocket=True, remove_coreset_from_refinedset=True, sanitize=False,
calc_charges=False, remove_hs=False, use_conformation=True,
construct_graph_and_featurize=ACNN_graph_construction_and_featurization,
zero_padding=True, num_processes=None, local_path=None):
self.task_names = ['-logKd/Ki']
self.n_tasks = len(self.task_names)
self._read_data_files(pdb_version, subset, load_binding_pocket, remove_coreset_from_refinedset, local_path)
self._preprocess(load_binding_pocket,
sanitize, calc_charges, remove_hs, use_conformation,
construct_graph_and_featurize, zero_padding, num_processes)
# Prepare for Refined, Agglomerative Sequence Split and Agglomerative Structure Split
if pdb_version == 'v2007' and not local_path:
merged_df = self.df.merge(self.agg_split, on='PDB_code')
self.agg_sequence_split = [list(merged_df.loc[merged_df['sequence']==target_set, 'PDB_code'].index)
for target_set in ['train', 'valid', 'test']]
self.agg_structure_split = [list(merged_df.loc[merged_df['structure']==target_set, 'PDB_code'].index)
for target_set in ['train', 'valid', 'test']]
def _read_data_files(self, pdb_version, subset, load_binding_pocket, remove_coreset_from_refinedset, local_path):
"""Download and extract pdbbind data files specified by the version"""
root_dir_path = get_download_dir()
if local_path:
if local_path[-1] != '/':
local_path += '/'
index_label_file = glob.glob(local_path + '*' + subset + '*data*')[0]
elif pdb_version == 'v2015':
self._url = 'dataset/pdbbind_v2015.tar.gz'
data_path = root_dir_path + '/pdbbind_v2015.tar.gz'
extracted_data_path = root_dir_path + '/pdbbind_v2015'
download(_get_dgl_url(self._url), path=data_path, overwrite=False)
extract_archive(data_path, extracted_data_path)
if subset == 'core':
index_label_file = extracted_data_path + '/v2015/INDEX_core_data.2013'
elif subset == 'refined':
index_label_file = extracted_data_path + '/v2015/INDEX_refined_data.2015'
else:
raise ValueError('Expect the subset_choice to be either core or refined, got {}'.format(subset))
elif pdb_version == 'v2007':
self._url = 'dataset/pdbbind_v2007.tar.gz'
data_path = root_dir_path + '/pdbbind_v2007.tar.gz'
extracted_data_path = root_dir_path + '/pdbbind_v2007'
download(_get_dgl_url(self._url), path=data_path, overwrite=False)
extract_archive(data_path, extracted_data_path, overwrite=False)
extracted_data_path += '/home/ubuntu' # extra layer
# DataFrame containing the pdbbind_2007_agglomerative_split.txt
self.agg_split = pd.read_csv(extracted_data_path + '/v2007/pdbbind_2007_agglomerative_split.txt')
self.agg_split.rename(columns={'PDB ID':'PDB_code', 'Sequence-based assignment':'sequence', 'Structure-based assignment':'structure'}, inplace=True)
self.agg_split.loc[self.agg_split['PDB_code']=='1.00E+66', 'PDB_code'] = '1e66' # fix typo
if subset == 'core':
index_label_file = extracted_data_path + '/v2007/INDEX.2007.core.data'
elif subset == 'refined':
index_label_file = extracted_data_path + '/v2007/INDEX.2007.refined.data'
else:
raise ValueError('Expect the subset_choice to be either core or refined, got {}'.format(subset))
contents = []
with open(index_label_file, 'r') as f:
for line in f.readlines():
if line[0] != "#":
splitted_elements = line.split()
if pdb_version == 'v2015':
if len(splitted_elements) == 8:
# Ignore "//"
contents.append(splitted_elements[:5] + splitted_elements[6:])
else:
print('Incorrect data format.')
print(splitted_elements)
elif pdb_version == 'v2007':
if len(splitted_elements) == 6:
contents.append(splitted_elements)
else:
contents.append(splitted_elements[:5] + [' '.join(splitted_elements[5:])])
if pdb_version == 'v2015':
self.df = pd.DataFrame(contents, columns=(
'PDB_code', 'resolution', 'release_year',
'-logKd/Ki', 'Kd/Ki', 'reference', 'ligand_name'))
elif pdb_version == 'v2007':
self.df = pd.DataFrame(contents, columns=(
'PDB_code', 'resolution', 'release_year',
'-logKd/Ki', 'Kd/Ki', 'cluster_ID'))
# remove core set from refined set if using refined
if remove_coreset_from_refinedset and subset == 'refined':
if local_path:
core_path = glob.glob(local_path + '*core*data*')[0]
elif pdb_version == 'v2015':
core_path = extracted_data_path + '/v2015/INDEX_core_data.2013'
elif pdb_version == 'v2007':
core_path = extracted_data_path + '/v2007/INDEX.2007.core.data'
core_pdbs = []
with open(core_path,'r') as f:
for line in f:
fields = line.strip().split()
if fields[0] != "#":
core_pdbs.append(fields[0])
non_core_ids = []
for i in range(len(self.df)):
if self.df['PDB_code'][i] not in core_pdbs:
non_core_ids.append(i)
self.df = self.df.iloc[non_core_ids]
pdbs = self.df['PDB_code'].tolist()
if local_path:
pdb_path = local_path
else:
pdb_path = os.path.join(extracted_data_path, pdb_version)
print('Loading PDBBind data from', pdb_path)
self.ligand_files = [os.path.join(pdb_path, pdb, '{}_ligand.sdf'.format(pdb)) for pdb in pdbs]
if load_binding_pocket:
self.protein_files = [os.path.join(pdb_path, pdb, '{}_pocket.pdb'.format(pdb)) for pdb in pdbs]
else:
self.protein_files = [os.path.join(pdb_path, pdb, '{}_protein.pdb'.format(pdb)) for pdb in pdbs]
def _filter_out_invalid(self, ligands_loaded, proteins_loaded, use_conformation):
"""Filter out invalid ligand-protein pairs.
Parameters
----------
ligands_loaded : list
Each element is a 2-tuple of the RDKit molecule instance and its associated atom
coordinates. None is used to represent invalid/non-existing molecule or coordinates.
proteins_loaded : list
Each element is a 2-tuple of the RDKit molecule instance and its associated atom
coordinates. None is used to represent invalid/non-existing molecule or coordinates.
use_conformation : bool
Whether we need conformation information (atom coordinates) and filter out molecules
without valid conformation.
"""
num_pairs = len(proteins_loaded)
self.indices, self.ligand_mols, self.protein_mols = [], [], []
if use_conformation:
self.ligand_coordinates, self.protein_coordinates = [], []
else:
# Use None for placeholders.
self.ligand_coordinates = [None for _ in range(num_pairs)]
self.protein_coordinates = [None for _ in range(num_pairs)]
for i in range(num_pairs):
ligand_mol, ligand_coordinates = ligands_loaded[i]
protein_mol, protein_coordinates = proteins_loaded[i]
if (not use_conformation) and all(v is not None for v in [protein_mol, ligand_mol]):
self.indices.append(i)
self.ligand_mols.append(ligand_mol)
self.protein_mols.append(protein_mol)
elif all(v is not None for v in [
protein_mol, protein_coordinates, ligand_mol, ligand_coordinates]):
self.indices.append(i)
self.ligand_mols.append(ligand_mol)
self.ligand_coordinates.append(ligand_coordinates)
self.protein_mols.append(protein_mol)
self.protein_coordinates.append(protein_coordinates)
def _preprocess(self, load_binding_pocket,
sanitize, calc_charges, remove_hs, use_conformation,
construct_graph_and_featurize, zero_padding, num_processes):
"""Preprocess the dataset.
The pre-processing proceeds as follows:
1. Load the dataset
2. Clean the dataset and filter out invalid pairs
3. Construct graphs
4. Prepare node and edge features
Parameters
----------
load_binding_pocket : bool
Whether to load binding pockets or full proteins.
sanitize : bool
Whether sanitization is performed in initializing RDKit molecule instances. See
https://www.rdkit.org/docs/RDKit_Book.html for details of the sanitization.
calc_charges : bool
Whether to add Gasteiger charges via RDKit. Setting this to be True will enforce
``sanitize`` to be True.
remove_hs : bool
Whether to remove hydrogens via RDKit. Note that removing hydrogens can be quite
slow for large molecules.
use_conformation : bool
Whether we need to extract molecular conformation from proteins and ligands.
construct_graph_and_featurize : callable
Construct a DGLHeteroGraph for the use of GNNs. Mapping self.ligand_mols[i],
self.protein_mols[i], self.ligand_coordinates[i] and self.protein_coordinates[i]
to a DGLHeteroGraph. Default to :func:`ACNN_graph_construction_and_featurization`.
zero_padding : bool
Whether to perform zero padding. While DGL does not necessarily require zero padding,
pooling operations for variable length inputs can introduce stochastic behaviour, which
is not desired for sensitive scenarios.
num_processes : int or None
Number of worker processes to use. If None,
then we will use the number of CPUs in the system.
"""
if num_processes is None:
num_processes = multiprocessing.cpu_count()
num_processes = min(num_processes, len(self.df))
print('Loading ligands...')
ligands_loaded = multiprocess_load_molecules(self.ligand_files,
sanitize=sanitize,
calc_charges=calc_charges,
remove_hs=remove_hs,
use_conformation=use_conformation,
num_processes=num_processes)
print('Loading proteins...')
proteins_loaded = multiprocess_load_molecules(self.protein_files,
sanitize=sanitize,
calc_charges=calc_charges,
remove_hs=remove_hs,
use_conformation=use_conformation,
num_processes=num_processes)
self._filter_out_invalid(ligands_loaded, proteins_loaded, use_conformation)
self.df = self.df.iloc[self.indices]
self.labels = F.zerocopy_from_numpy(self.df[self.task_names].values.astype(np.float32))
print('Finished cleaning the dataset, '
'got {:d}/{:d} valid pairs'.format(len(self), len(self.ligand_files))) # account for the ones use_conformation failed
# Prepare zero padding
if zero_padding:
max_num_ligand_atoms = 0
max_num_protein_atoms = 0
for i in range(len(self)):
max_num_ligand_atoms = max(
max_num_ligand_atoms, self.ligand_mols[i].GetNumAtoms())
max_num_protein_atoms = max(
max_num_protein_atoms, self.protein_mols[i].GetNumAtoms())
else:
max_num_ligand_atoms = None
max_num_protein_atoms = None
construct_graph_and_featurize = partial(construct_graph_and_featurize,
max_num_ligand_atoms=max_num_ligand_atoms,
max_num_protein_atoms=max_num_protein_atoms)
print('Start constructing graphs and featurizing them.')
num_mols = len(self)
# construct graphs with multiprocessing
pool = multiprocessing.Pool(processes=num_processes)
self.graphs = pool.starmap(construct_graph_and_featurize,
zip(self.ligand_mols, self.protein_mols,
self.ligand_coordinates, self.protein_coordinates))
print(f'Done constructing {len(self.graphs)} graphs.')
def __len__(self):
"""Get the size of the dataset.
Returns
-------
int
Number of valid ligand-protein pairs in the dataset.
"""
return len(self.indices)
def __getitem__(self, item):
"""Get the datapoint associated with the index.
Parameters
----------
item : int
Index for the datapoint.
Returns
-------
int
Index for the datapoint.
rdkit.Chem.rdchem.Mol
RDKit molecule instance for the ligand molecule.
rdkit.Chem.rdchem.Mol
RDKit molecule instance for the protein molecule.
DGLGraph or tuple of DGLGraphs
Pre-processed DGLGraph with features extracted.
For ACNN, a single DGLGraph;
For PotentialNet, a tuple of DGLGraphs that consists of a molecular graph and a KNN graph of the complex.
Float32 tensor
Label for the datapoint.
"""
return item, self.ligand_mols[item], self.protein_mols[item], \
self.graphs[item], self.labels[item]