-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathredshift_monitoring.py
378 lines (308 loc) · 14 KB
/
redshift_monitoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from __future__ import print_function
import os
import sys
# Copyright 2016-2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at
# http://aws.amazon.com/apache2.0/
# or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
# add the lib directory to the path
sys.path.append(os.path.join(os.path.dirname(__file__), "lib"))
sys.path.append(os.path.join(os.path.dirname(__file__), "sql"))
import boto3
import base64
import pg8000.native
import datetime
import json
import pgpasslib
#### Static Configuration
ssl = True
interval = '1 hour'
##################
__version__ = "1.8"
debug = False
pg8000.paramstyle = "qmark"
NAME = "Lambda CloudWatch Exporter"
def run_external_commands(command_set_type, file_name, conn, cluster):
if not os.path.exists(file_name):
return []
external_commands = None
try:
external_commands = json.load(open(file_name, 'r'))
except ValueError as e:
# handle a malformed user query set gracefully
if e.message == "No JSON object could be decoded":
return []
else:
raise
output_metrics = []
for command in external_commands:
if command['type'] == 'value':
cmd_type = "Query"
else:
cmd_type = "Canary"
print("Executing %s %s: %s" % (command_set_type, cmd_type, command['name']))
try:
t = datetime.datetime.now()
interval, result = run_command(conn, command['query'])
for row in result:
value, *_ = row
# append a cloudwatch metric for the value, or the elapsed interval, based upon the configured 'type' value
if command['type'] == 'value':
output_metrics.append({
'MetricName': command['name'],
'Dimensions': [
{'Name': 'ClusterIdentifier', 'Value': cluster}
],
'Timestamp': t,
'Value': 0 if value is None else value,
'Unit': command['unit']
})
else:
output_metrics.append({
'MetricName': command['name'],
'Dimensions': [
{'Name': 'ClusterIdentifier', 'Value': cluster}
],
'Timestamp': t,
'Value': interval,
'Unit': 'Milliseconds'
})
except Exception as e:
print("Exception running external command %s" % command['name'])
print(e)
return output_metrics
def run_command(conn, statement) -> tuple:
if debug:
print("Running Statement: %s" % statement)
t = datetime.datetime.now()
output = conn.run(statement)
interval = (datetime.datetime.now() - t).microseconds / 1000
return interval, output
def gather_service_class_stats(conn, cluster):
metrics = []
runtime, service_class_info = run_command(conn, '''
SELECT DATE_TRUNC('hour', a.service_class_start_time) AS metrics_ts,
TRIM(d.name) as service_class,
COUNT(a.query) AS query_count,
SUM(a.total_exec_time) AS sum_exec_time,
sum(case when a.total_queue_time > 0 then 1 else 0 end) count_queued_queries,
SUM(a.total_queue_time) AS sum_queue_time,
count(c.is_diskbased) as count_diskbased_segments
FROM stl_wlm_query a
JOIN stv_wlm_classification_config b ON a.service_class = b.action_service_class
LEFT OUTER JOIN (select query, SUM(CASE when is_diskbased = 't' then 1 else 0 end) is_diskbased
from svl_query_summary
group by query) c on a.query = c.query
JOIN stv_wlm_service_class_config d on a.service_class = d.service_class
WHERE a.service_class > 5
AND a.service_class_start_time > DATEADD(hour, -2, current_date)
GROUP BY DATE_TRUNC('hour', a.service_class_start_time),
d.name
''')
def add_metric(metric_name, service_class_id, metric_value, ts):
metrics.append({
'MetricName': metric_name,
'Dimensions': [{'Name': 'ClusterIdentifier', 'Value': cluster},
{'Name': 'ServiceClassID', 'Value': str(service_class_id)}],
'Timestamp': ts,
'Value': metric_value
})
for service_class in service_class_info:
add_metric('ServiceClass-Queued', service_class[1], service_class[4], service_class[0])
add_metric('ServiceClass-QueueTime', service_class[1], service_class[5], service_class[0])
add_metric('ServiceClass-Executed', service_class[1], service_class[2], service_class[0])
add_metric('ServiceClass-ExecTime', service_class[1], service_class[3], service_class[0])
add_metric('ServiceClass-DiskbasedQuerySegments', service_class[1], service_class[6], service_class[0])
return metrics
def gather_table_stats(conn, cluster):
interval, result = run_command(conn,
f"select /* {NAME} */ \"schema\" || '.' || \"table\" as table, encoded, max_varchar, unsorted, stats_off, tbl_rows, skew_sortkey1, skew_rows from svv_table_info")
tables_not_compressed = 0
max_skew_ratio = 0
total_skew_ratio = 0
number_tables_skew = 0
number_tables = 0
max_skew_sort_ratio = 0
total_skew_sort_ratio = 0
number_tables_skew_sort = 0
number_tables_statsoff = 0
max_varchar_size = 0
max_unsorted_pct = 0
total_rows = 0
for table in result:
table_name, encoded, max_varchar, unsorted, stats_off, tbl_rows, skew_sortkey1, skew_rows, *_ = table
number_tables += 1
if encoded == 'N':
tables_not_compressed += 1
if skew_rows is not None:
if skew_rows > max_skew_ratio:
max_skew_ratio = skew_rows
total_skew_ratio += skew_rows
number_tables_skew += 1
if skew_sortkey1 is not None:
if skew_sortkey1 > max_skew_sort_ratio:
max_skew_sort_ratio = skew_sortkey1
total_skew_sort_ratio += skew_sortkey1
number_tables_skew_sort += 1
if stats_off is not None and stats_off > 5:
number_tables_statsoff += 1
if max_varchar is not None and max_varchar > max_varchar_size:
max_varchar_size = max_varchar
if unsorted is not None and unsorted > max_unsorted_pct:
max_unsorted_pct = unsorted
if tbl_rows is not None:
total_rows += tbl_rows
if number_tables_skew > 0:
avg_skew_ratio = total_skew_ratio / number_tables_skew
else:
avg_skew_ratio = 0
if number_tables_skew_sort > 0:
avg_skew_sort_ratio = total_skew_sort_ratio / number_tables_skew_sort
else:
avg_skew_sort_ratio = 0
# build up the metrics to put in cloudwatch
metrics = []
def add_metric(metric_name, value, unit):
metrics.append({
'MetricName': metric_name,
'Dimensions': [
{'Name': 'ClusterIdentifier', 'Value': cluster}
],
'Timestamp': datetime.datetime.utcnow(),
'Value': value,
'Unit': unit
})
units_count = 'Count'
units_none = 'None'
units_pct = 'Percent'
add_metric('TablesNotCompressed', tables_not_compressed, units_count)
add_metric('MaxSkewRatio', max_skew_ratio, units_none)
add_metric('MaxSkewSortRatio', max_skew_sort_ratio, units_none)
add_metric('AvgSkewRatio', avg_skew_ratio, units_none)
add_metric('AvgSkewSortRatio', avg_skew_sort_ratio, units_none)
add_metric('Tables', number_tables, units_count)
add_metric('Rows', total_rows, units_count)
add_metric('TablesStatsOff', number_tables_statsoff, units_count)
add_metric('MaxVarcharSize', max_varchar_size, units_none)
add_metric('MaxUnsorted', max_unsorted_pct, units_pct)
return metrics
# nasty hack for backward compatibility, to extract label values from os.environ or event
def get_config_value(labels, configs):
for l in labels:
for c in configs:
if l in c:
if debug:
print("Resolved label value %s from config" % l)
return c[l]
return None
def monitor_cluster(config_sources):
aws_region = get_config_value(['AWS_REGION'], config_sources)
set_debug = get_config_value(['DEBUG', 'debug', ], config_sources)
if set_debug is not None and ((isinstance(set_debug, bool) and set_debug) or set_debug.upper() == 'TRUE'):
global debug
debug = True
kms = boto3.client('kms', region_name=aws_region)
cw = boto3.client('cloudwatch', region_name=aws_region)
redshift = boto3.client('redshift', region_name=aws_region)
if debug:
print("Connected to AWS KMS & CloudWatch in %s" % aws_region)
user = get_config_value(['DbUser', 'db_user', 'dbUser'], config_sources)
host = get_config_value(['HostName', 'cluster_endpoint', 'dbHost', 'db_host'], config_sources)
port = int(get_config_value(['HostPort', 'db_port', 'dbPort'], config_sources))
database = get_config_value(['DatabaseName', 'db_name', 'db'], config_sources)
cluster = get_config_value(['ClusterName', 'cluster_name', 'clusterName'], config_sources)
global interval
interval = get_config_value(['AggregationInterval', 'agg_interval', 'aggregtionInterval'], config_sources)
pwd = None
try:
pwd = pgpasslib.getpass(host, port, database, user)
except pgpasslib.FileNotFound as e:
pass
# check if unencrypted password exists if no pgpasslib
if pwd is None:
pwd = get_config_value(['db_pwd'], config_sources)
# check for encrypted password if the above two don't exist
if pwd is None:
enc_password = get_config_value(['EncryptedPassword', 'encrypted_password', 'encrypted_pwd', 'dbPassword'],
config_sources)
if enc_password:
# resolve the authorisation context, if there is one, and decrypt the password
auth_context = get_config_value('kms_auth_context', config_sources)
if auth_context is not None:
auth_context = json.loads(auth_context)
try:
if auth_context is None:
pwd = kms.decrypt(CiphertextBlob=base64.b64decode(enc_password))[
'Plaintext']
else:
pwd = kms.decrypt(CiphertextBlob=base64.b64decode(enc_password), EncryptionContext=auth_context)[
'Plaintext']
except:
print('KMS access failed: exception %s' % sys.exc_info()[1])
print('Encrypted Password: %s' % enc_password)
print('Encryption Context %s' % auth_context)
# check for credentials using IAM database authentication
if pwd is None:
try:
cluster_credentials = redshift.get_cluster_credentials(DbUser=user,
DbName=database,
ClusterIdentifier=cluster,
AutoCreate=False)
user = cluster_credentials['DbUser']
pwd = cluster_credentials['DbPassword']
except:
print('GetClusterCredentials failed: exception %s' % sys.exc_info()[1])
# Connect to the cluster
try:
if debug:
print('Connecting to Redshift: %s' % host)
conn = pg8000.native.Connection(user, host=host, database=database, port=port, password=pwd, ssl_context=True,
tcp_keepalive=True, application_name=NAME)
conn.autocommit = True
except:
print('Redshift Connection Failed: exception %s' % sys.exc_info()[1])
raise
if debug:
print('Successfully Connected to Cluster')
# set application name
set_name = f"set application_name to '{NAME}-v{__version__}'"
if debug:
print(set_name)
run_command(conn, set_name)
# collect table statistics
put_metrics = gather_table_stats(conn, cluster)
# collect service class statistics
put_metrics.extend(gather_service_class_stats(conn, cluster))
# run the externally configured commands and append their values onto the put metrics
put_metrics.extend(run_external_commands('Redshift Diagnostic', 'monitoring-queries.json', conn, cluster))
# run the supplied user commands and append their values onto the put metrics
put_metrics.extend(run_external_commands('User Configured', 'user-queries.json', conn, cluster))
# add a metric for how many metrics we're exporting (whoa inception)
put_metrics.extend([{
'MetricName': 'CloudwatchMetricsExported',
'Dimensions': [
{'Name': 'ClusterIdentifier', 'Value': cluster}
],
'Timestamp': datetime.datetime.utcnow(),
'Value': len(put_metrics),
'Unit': 'Count'
}])
max_metrics = 20
group = 0
print("Publishing %s CloudWatch Metrics" % (len(put_metrics)))
for x in range(0, len(put_metrics), max_metrics):
group += 1
# slice the metrics into blocks of 20 or just the remaining metrics
put = put_metrics[x:(x + max_metrics)]
if debug:
print("Metrics group %s: %s Datapoints" % (group, len(put)))
print(put)
try:
cw.put_metric_data(
Namespace='Redshift',
MetricData=put
)
except:
print('Pushing metrics to CloudWatch failed: exception %s' % sys.exc_info()[1])
raise
conn.close()