-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathpredict.m
92 lines (68 loc) · 2.47 KB
/
predict.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
%%
% PREDICT.m
%
% Author:
% Arno Solin, 2014
%
% License:
% This software is distributed under the GNU General Public License
% (version 3 or later); please refer to the file LICENSE.txt, included
% with the software, for details.
%
%%
% Load data
%
% Load labels
labels_train = dataset('file', ...
fullfile(TRAIN_DATA_PATH,'train_labels.csv'),'Delimiter',',');
% Load training FNC features from file into a dataset array variable
FNC_train = dataset('file', ...
fullfile(TRAIN_DATA_PATH,'train_FNC.csv'),'Delimiter',',');
% Load training SBM features from file into a dataset array variable
SBM_train = dataset('file', ...
fullfile(TRAIN_DATA_PATH,'train_SBM.csv'),'Delimiter',',');
% Load test FNC features from file into a dataset array variable
FNC_test = dataset('file', ...
fullfile(TEST_DATA_PATH,'test_FNC.csv'),'Delimiter',',');
% Load test SBM features from file into a dataset array variable
SBM_test = dataset('file', ...
fullfile(TEST_DATA_PATH,'test_SBM.csv'),'Delimiter',',');
%%
% Combine and normalize data
%
% Convert to y \in {-1,1},
% where Healthy Control => -1 and Schizophrenic Patient => 1
y = 2*double(labels_train.Class)-1;
% Normalize feature vectors by their standard deviations
x = [bsxfun(@rdivide,double(SBM_train(:,2:end)), ...
std(double(SBM_train(:,2:end)),[],1)) ...
bsxfun(@rdivide,double(FNC_train(:,2:end)), ...
std(double(FNC_train(:,2:end)),[],1))];
% Normalize test set feature vectors in the same way
xt = [bsxfun(@rdivide,double(SBM_test(:,2:end)), ...
std(double(SBM_train(:,2:end)),[],1)) ...
bsxfun(@rdivide,double(FNC_test(:,2:end)), ...
std(double(FNC_train(:,2:end)),[],1))];
%%
% Load the trained model
%
% Load the model 'gp' (MODEL_PATH specified in 'settings.m')
load(MODEL_PATH);
%%
% Predict test inputs
%
% Predict
[Eft, Varft, lpyt] = gp_pred(gp, x, y, xt, 'yt', ones(size(xt,1),1));
% The label probabilities
tpreds = exp(lpyt);
%%
% Save the result
%
% Load example submission from file into a dataset array variable
example = dataset('file','submission_example.csv','Delimiter',',');
% Enter your scores into the example dataset
example.Probability = tpreds(:);
% Save your scores in a new submission file. The SUBMISSION_PATH
% is specified in 'settings.m'. This assumes you have write permission
% to the specified folder.
export(example,'file',SUBMISSION_PATH,'Delimiter',',');