-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmixedvinefit.m
260 lines (235 loc) · 7.85 KB
/
mixedvinefit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
% Copyright (C) 2016 Arno Onken
%
% This file is part of the Mixed Vine Toolbox.
%
% The Mixed Vine Toolbox is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License as published
% by the Free Software Foundation; either version 3 of the License, or (at
% your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
% Public License for more details.
%
% You should have received a copy of the GNU General Public License along
% with this program; if not, see <http://www.gnu.org/licenses/>.
function [vine,logp] = mixedvinefit(x,type,iscont,tl,refine)
% MIXEDVINEFIT Mixed copula vine estimates.
% VINE = MIXEDVINEFIT(X,TYPE,ISCONT,TL,REFINE) selects the best fitting
% mixed margin copula vine of type TYPE given the data X, where X has the
% size [N, D] for N the number of samples and D the dimension of each
% sample. The selection criterion is the Akaike information criterion for
% both margins and copula families. TYPE can only be 'c-vine' for the
% canonical vine for now.
% The mixed continuous and discrete margins are returned in the cell
% field VINE.margins. Each element of the cell specifies one margin and
% is specified in a struct as returned by MARGINFIT. The margin
% distribution is continuous if the corresponding element in the boolean
% vector ISCONT is true and discrete otherwise. TL is a scalar specifing
% the truncation level of the vine. Elements in the vine tree beyond tree
% level TL are assumed to be independent. REFINE is a boolean specifying
% whether the inference for margins results should be refined by means of
% joint parameter estimation (default REFINE = D<=5).
% The vine copula families are returned in the D x D cell field
% VINE.families. Each element of this cell specifies a copula family and
% can be one of
% 'ind' for independence,
% 'gaussian' for the Gaussian copula family,
% 'student' for the student copula family,
% 'clayton' for the Clayton copula family,
% 'claytonrot090' for the 90° clockwise rotated Clayton copula family,
% 'claytonrot180' for the survival Clayton copula family,
% 'claytonrot270' for the 270° clockwise rotated Clayton copula family,
% or be empty if the vine type does not use the element. The parameters
% of the copula families are returned in the corresponding elements of
% the cell field VINE.theta.
% The return value logp is the log likelihood of X given VINE.
% Argument checks
if nargin < 3
error('mixedvinefit: Usage vine = mixedvinefit(x,type,iscont,tl,refine)');
end
if ~ismatrix(x)
error('mixedvinefit: Argument "x" must be a matrix');
end
% Check whether the variance in any margin is 0
if any(var(x)==0)
error('mixedvinefit: Zero variance margin');
end
[cases,d] = size(x);
global newvine newnode u truncation;
if ~ischar(type)
error('mixedvinefit: Argument "type" must be a string');
end
if ~strcmpi(type,'c-vine')
error('mixedvinefit: Currently, argument "type" must be "c-vine"');
end
if ~islogical(iscont) || length(iscont) ~= d
error('mixedvinefit: Argument "iscont" must be a boolean vector of length d');
end
if nargin < 4 || isempty(tl)
truncation = d-1;
else
if ~isscalar(tl) || round(tl)~=tl
error('mixedvinefit: Truncation level "tl" must be an integer scalar');
end
truncation = tl;
end
if nargin < 5
refine = d<=5;
end
newnode = true(d);
u = zeros(cases,d,d);
% Fit margins
margins = cell(d,1);
for i = 1:d
margins{i} = marginfit(x(:,i),iscont(i));
u(:,i,i) = margincdf(margins{i},x(:,i));
end
newvine.margins = margins;
newvine.type = type;
newvine.families = cell(d);
newvine.theta = cell(d);
% Fit vine
fitctree(d-1,d);
vine = newvine;
clear global newvine newnode u truncation;
% Joint parameter estimation with current values as initial values
jointtheta = jointpar(vine.theta);
if ~isempty(jointtheta)
[lb,ub] = vinebounds(vine);
% Objective function
objf = @(jointtheta) -sum(log(mixedvinepdf(thetavine(vine,jointtheta),x)+eps));
% Check whether the initial parameters are feasible
val = objf(jointtheta);
while isnan(val) || isinf(val)
% Try distortion of initpar
jointtheta = jointtheta + rand(size(jointtheta));
% Ensure bounds
k = jointtheta <= lb;
jointtheta(k) = lb(k) + 1e-3;
k = jointtheta >= ub;
jointtheta(k) = ub(k) - 1e-3;
val = objf(jointtheta);
end
if refine
options = optimset('Algorithm','interior-point','Display','off','MaxIter',100);
try
[jointtheta,val] = fmincon(objf,jointtheta,[],[],[],[],lb,ub,[],options);
catch err
disp(['mixedvinefit: Unable to refine parameters.' err.message]);
end
end
vine = thetavine(vine,jointtheta);
else
val = -sum(log(mixedvinepdf(vine,x)+eps));
end
logp = -val;
end
function fitnode(v,i,j,treelevel)
% Fits a single node
global newvine truncation;
if treelevel > truncation
newvine.families{i,j} = 'ind';
else
families = {'ind','gaussian','student','clayton','claytonrot090','claytonrot180','claytonrot270'};
aic = zeros(length(families),1);
theta = cell(length(families),1);
for k = 1:length(families)
theta{k} = copulafit(families{k},v);
logp = sum(log(copulapdf(families{k},v,theta{k})+eps));
aic(k) = 2*length(theta{k}) - 2*logp;
end
% Use AIC for selecting the best family
[~,kmin] = min(aic);
newvine.families{i,j} = families{kmin};
newvine.theta{i,j} = theta{kmin};
end
end
function fitctree(i,j)
% Fits a canonical vine tree
global newvine newnode u;
if i == 1
% Leaf
v = [u(:,1,1) u(:,j,j)];
else
% Node
if newnode(i-1,i)
fitctree(i-1,i);
end
if newnode(i-1,j)
fitctree(i-1,j);
end
v = [u(:,i-1,i) u(:,i-1,j)];
end
treelevel = i;
fitnode(v,i,j,treelevel);
u(:,i,j) = copulaccdf(newvine.families{i,j},v,newvine.theta{i,j},1);
newnode(i,j) = false;
end
function jointtheta = jointpar(theta)
% Puts all parameters into a single vector
npar = 0;
for i = 1:size(theta,1)
for j = 1:size(theta,2)
npar = npar + length(theta{i,j});
end
end
jointtheta = zeros(npar,1);
index = 1;
for i = 1:size(theta,1)
for j = 1:size(theta,2)
for k = 1:length(theta{i,j})
jointtheta(index) = theta{i,j}(k);
index = index + 1;
end
end
end
end
function vine = thetavine(vine,jointtheta)
% Sets VINE.theta with the complete parameter vector JOINTTHETA
theta = cell(size(vine.theta));
index = 1;
for i = 1:size(vine.theta,1)
for j = 1:size(vine.theta,2)
theta{i,j} = zeros(size(vine.theta{i,j}));
for k = 1:length(theta{i,j})
theta{i,j}(k) = jointtheta(index);
index = index + 1;
end
end
end
vine.theta = theta;
end
function [lb,ub] = vinebounds(vine)
% Returns the lower and upper bounds of the vine parameters
npar = 0;
for i = 1:size(vine.theta,1)
for j = 1:size(vine.theta,2)
npar = npar + length(vine.theta{i,j});
end
end
lb = zeros(npar,1);
ub = zeros(npar,1);
index = 1;
for i = 1:size(vine.theta,1)
for j = 1:size(vine.theta,2)
if ~isempty(vine.theta{i,j})
switch lower(vine.families{i,j})
case 'gaussian'
lb(index) = -1;
ub(index) = 1;
case 'student'
lb(index) = -1;
ub(index) = 1;
lb(index+1) = 1e-1;
ub(index+1) = 1000;
case {'clayton','claytonrot090','claytonrot180','claytonrot270'}
lb(index) = 1e-3;
ub(index) = 20;
end
index = index + length(vine.theta{i,j});
end
end
end
end