-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_project_task1.m
135 lines (117 loc) · 4.87 KB
/
final_project_task1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
% Final Project - Task 1
% Andrea Senacheribbe s224178
%% signals and filter definitions
clear variables
clc
close all
N=64; % period
N_p=8; % number of periods
N_tot=N*N_p; % total number of samples
n=[0:(N_tot-1)]';
% generating the square wave
DC=0.5; % duty cycle
x_sw=repmat([ones(DC*N,1); -ones((1-DC)*N,1)], N_p, 1);
% one period of the signal is repeated N_p times
% generating the sine wave
x_sin=sqrt(2)*sin(2*pi*n/N);
% filter parameters
a=[-0.9,-0.8,-0.4,0,0.4,0.8,0.9];
alpha=1-a;
% outputs of the filter, one column for each val of a
y_sw=zeros(N_tot,length(a));
y_sin=zeros(N_tot,length(a));
for i=1:length(a) % iterating for different values of a
y_sw(1, i)=alpha(i)*x_sw(1);
y_sin(1, i)=alpha(i)*x_sin(1);
for j=2:N_tot
% computing the output using finite difference equations
y_sw(j, i)=alpha(i)*x_sw(j)+a(i)*y_sw(j-1, i);
y_sin(j, i)=alpha(i)*x_sin(j)+a(i)*y_sin(j-1, i);
end
end
%% plot output square wave
close all
for i=1:length(a)
figure('PaperOrientation','landscape')
stem(n,x_sw), hold on, grid on % plotting input
stem(n, y_sw(:,i)) % vs output of the filter
title(strcat('Input and output signals for the filter with a=', num2str(a(i)))), legend('input x[n]', 'output y[n]')
xlabel('n'), ylabel('x[n], y[n]')
axis([-1 N_tot -2.8 2.8]), pbaspect([2.5 1 1])
print('-fillpage', strcat('latex/graphics/task1/io_sw_',int2str(i)),'-dpdf')
end
%% plot output sin wave
close all
for i=1:length(a)
figure('PaperOrientation','landscape')
stem(n,x_sin), hold on, grid on % plotting input
stem(n, y_sin(:,i)) % vs output of the filter
title(strcat('Input and output signals for the filter with a=', num2str(a(i)))), legend('input x[n]', 'output y[n]')
xlabel('n'), ylabel('x[n], y[n]')
axis([-1 N_tot -1.5 1.5]), pbaspect([2.5 1 1])
print('-fillpage', strcat('latex/graphics/task1/io_sin_',int2str(i)),'-dpdf')
end
%% DFT for square wave
close all
X_sw=fft(x_sw(1:N));
for i=1:length(a)
figure('PaperOrientation','landscape')
stem(0:N-1,abs(X_sw)), hold on, grid on % dft of input
stem(0:N-1, abs(fft(y_sw(N*(N_p-1)+1:end,i))))
% dtf of the output (from last period)
title(strcat('DFT of input and output signals (a=', num2str(a(i)), ')')), legend('DFT of input x[n]', 'DFT of output y[n]')
xlabel('k'), ylabel('DFT(x[n]), DFT(y[n])')
axis([0 N-1 0 45]), pbaspect([2.5 1 1])
print('-fillpage', strcat('latex/graphics/task1/dft_sw_',int2str(i)),'-dpdf')
end
%% DFT for sin wave
close all
X_sin=fft(x_sin(1:N));
for i=1:length(a)
figure('PaperOrientation','landscape')
stem(0:N-1,abs(X_sin)), hold on, grid on % dft of input
stem(0:N-1, abs(fft(y_sin(N*(N_p-1)+1:end,i))))
% dtf of the output (from last period)
title(strcat('DFT of input and output signals (a=', num2str(a(i)), ')')), legend('DFT of input x[n]', 'DFT of output y[n]')
xlabel('k'), ylabel('DFT(x[n]), DFT(y[n])')
axis([0 N-1 0 50]), pbaspect([2.5 1 1])
print('-fillpage', strcat('latex/graphics/task1/dft_sin_',int2str(i)),'-dpdf')
end
%% theoretical sinusoid
close all
H_resp=((1-[-0.8; 0.8])*exp(1j*2*pi/N))./(exp(1j*2*pi/N)-[-0.8; 0.8]);
% evaluating H(z) (for two val of a) at exp(j 2 pi / N)
% for a = -0.8
figure('PaperOrientation','landscape')
stem(n,y_sin(:,2)), hold on, grid on % plotting filter output
stem(n, abs(H_resp(1))*sqrt(2)*sin(2*pi*n/N+angle(H_resp(1))))
% vs theoretical output from theoretical sinusoid
title('Comparison of theoretical and simulated output of the filter (a=-0.8)'), legend('simulated output y[n]', 'theoretical output y_{the}[n]')
xlabel('n'), ylabel('y[n], y_{the}[n]')
axis([-1 N*2 -1.5 1.5]), pbaspect([2.5 1 1])
print('-fillpage', 'latex/graphics/task1/theor_sin_2','-dpdf')
% for a = 0.8
figure('PaperOrientation','landscape')
stem(n,y_sin(:,6)), hold on, grid on % plotting filter output
stem(n, abs(H_resp(2))*sqrt(2)*sin(2*pi*n/N+angle(H_resp(2))))
% vs theoretical output from theoretical sinusoid
title('Comparison of theoretical and simulated output of the filter (a=0.8)'), legend('simulated output y[n]', 'theoretical output y_{the}[n]')
xlabel('n'), ylabel('y[n], y_{the}[n]')
axis([-1 N*2 -1.5 1.5]), pbaspect([2.5 1 1])
print('-fillpage', 'latex/graphics/task1/theor_sin_6','-dpdf')
%% power
close all
avg_power_sw=zeros(1,length(a));
avg_power_sin=zeros(1,length(a));
for i=1:length(a) % iterating for different values of a
% evaluating avg power on last period of output signals
avg_power_sw(i)=y_sw(N*(N_p-1)+1:end,i)'*y_sw(N*(N_p-1)+1:end,i)/N;
avg_power_sin(i)=y_sin(N*(N_p-1)+1:end,i)'*y_sin(N*(N_p-1)+1:end,i)/N;
end
figure('PaperOrientation','landscape')
stem(a, avg_power_sw), hold on, grid on
stem(a, avg_power_sin)
title('Comparison of average power for different filter outputs'), legend('square wave', 'sinusoid')
xticks(a), xlabel('a'), ylabel('avg power of y[n]')
pbaspect([2.5 1 1])
print('-fillpage', 'latex/graphics/task1/power','-dpdf')