-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathval_2d.py
530 lines (463 loc) · 23.2 KB
/
val_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import os
join = os.path.join
import numpy as np
from glob import glob
import torch
from segment_anything.build_sam3D import sam_model_registry3D
from segment_anything.utils.transforms3D import ResizeLongestSide3D
from originalsam.segment_anything.build_sam import sam_model_registry
from tqdm import tqdm
import argparse
import SimpleITK as sitk
import torch.nn.functional as F
from torch.utils.data import DataLoader
import SimpleITK as sitk
import torchio as tio
import numpy as np
from collections import OrderedDict, defaultdict
import json
import pickle
from utils.click_method import get_next_click3D_torch_ritm, get_next_click3D_torch_2
from utils.data_loader import Dataset_Union_ALL_Val
import time
from thop import profile
from torchinfo import summary
from monai.losses import DiceCELoss
parser = argparse.ArgumentParser()
parser.add_argument('-tdp', '--test_data_path', type=str, default='/content/drive/MyDrive/paper_visual_results/totalseg')
parser.add_argument('-vp', '--vis_path', type=str, default='/content/drive/MyDrive/paper_visual_results/totalseg0441/med_sam_2d')
parser.add_argument('-cp', '--checkpoint_path', type=str, default='/content/drive/MyDrive/lighting_sam_3d/ckpt/sam_vit_b_01ec64.pth')
parser.add_argument('-sn', '--save_name', type=str, default='/content/drive/MyDrive/paper_visual_results/totalseg2d.py')
parser.add_argument('--image_size', type=int, default=1024) #
parser.add_argument('--crop_size', type=int, default=128)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('-mt', '--model_type', type=str, default='vit_b')
parser.add_argument('-nc', '--num_clicks', type=int, default=10)
parser.add_argument('-pm', '--point_method', type=str, default='default')
parser.add_argument('-dt', '--data_type', type=str, default='Tr')
parser.add_argument("--encoder_adapter", type=bool, default=False, help="use adapter")
parser.add_argument('--threshold', type=int, default=0)
parser.add_argument('--dim', type=int, default=2)
parser.add_argument('--split_idx', type=int, default=0)
parser.add_argument('--split_num', type=int, default=1)
parser.add_argument('--ft2d', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=2023)
args = parser.parse_args()
SEED = args.seed
print("set seed as", SEED)
torch.manual_seed(SEED)
np.random.seed(SEED)
if torch.cuda.is_available():
torch.cuda.init()
click_methods = {
'default': get_next_click3D_torch_ritm,
'ritm': get_next_click3D_torch_ritm,
'random': get_next_click3D_torch_2,
}
def compute_iou(pred_mask, gt_semantic_seg):
in_mask = np.logical_and(gt_semantic_seg, pred_mask)
out_mask = np.logical_or(gt_semantic_seg, pred_mask)
iou = np.sum(in_mask) / np.sum(out_mask)
return iou
def batch_forward(sam_model, image_embedding, gt3D, low_res_masks, points=None, device='cuda'):
#device = "cuda"
sparse_embeddings, dense_embeddings = sam_model.prompt_encoder(
points=points,
boxes=None,
masks=low_res_masks,
)
low_res_masks, iou_predictions = sam_model.mask_decoder(
image_embeddings=image_embedding.to(device), # (B, 256, 64, 64)
image_pe=sam_model.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
)
prev_masks = F.interpolate(low_res_masks, size=gt3D.shape[-3:], mode='trilinear', align_corners=False)
return low_res_masks, prev_masks
def get_points(click_type, prev_masks, gt3D, click_points, click_labels, device):
batch_points, batch_labels = click_methods[click_type](prev_masks, gt3D)
points_co = torch.cat(batch_points, dim=0).to(device)
points_la = torch.cat(batch_labels, dim=0).to(device)
click_points.append(points_co)
click_labels.append(points_la)
points_multi = torch.cat(click_points, dim=1).to(device)
labels_multi = torch.cat(click_labels, dim=1).to(device)
points_input = points_multi
labels_input = labels_multi
return points_input, labels_input, click_points, click_labels
def interaction(sam_model, image_embedding, gt3D, num_clicks):
click_type = 'random'
seg_loss = DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean')
img_size = 128
device = "cuda"
return_loss = 0
prev_masks = torch.zeros_like(gt3D).to(gt3D.device)
low_res_masks = F.interpolate(prev_masks.float(), size=(img_size//4,img_size//4,img_size//4))
click_points = []
click_labels = []
for num_click in range(num_clicks):
random_insert = np.random.randint(2, 9)
points_input, labels_input, click_points, click_labels = get_points(click_type, prev_masks, gt3D, click_points, click_labels, device)
if num_click == random_insert or num_click == num_clicks - 1:
low_res_masks, prev_masks = batch_forward(sam_model, image_embedding, gt3D, low_res_masks, points=None)
else:
low_res_masks, prev_masks = batch_forward(sam_model, image_embedding, gt3D, low_res_masks, points=[points_input, labels_input])
loss = seg_loss(prev_masks, gt3D)
return_loss += loss
return prev_masks, return_loss
def compute_dice(mask_gt, mask_pred):
"""Compute soerensen-dice coefficient.
Returns:
the dice coeffcient as float. If both masks are empty, the result is NaN
"""
volume_sum = mask_gt.sum() + mask_pred.sum()
if volume_sum == 0:
return np.NaN
volume_intersect = (mask_gt & mask_pred).sum()
return 2*volume_intersect / volume_sum
def postprocess_masks(low_res_masks, image_size, original_size):
ori_h, ori_w = original_size
masks = F.interpolate(
low_res_masks,
(image_size, image_size),
mode="bilinear",
align_corners=False,
)
if args.ft2d and ori_h < image_size and ori_w < image_size:
top = (image_size - ori_h) // 2
left = (image_size - ori_w) // 2
masks = masks[..., top : ori_h + top, left : ori_w + left]
pad = (top, left)
else:
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
pad = None
return masks, pad
def sam_decoder_inference(target_size, points_coords, points_labels, model, image_embeddings, mask_inputs=None, multimask = False):
with torch.no_grad():
sparse_embeddings, dense_embeddings= model.prompt_encoder(
points=(points_coords.to(model.device), points_labels.to(model.device)),
boxes=None,
masks=mask_inputs,
)
torch.cuda.reset_max_memory_allocated(model.device)
low_res_masks, iou_predictions, t = model.mask_decoder(
image_embeddings = image_embeddings,
image_pe = model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output = multimask,
)
# print(low_res_masks.shape)
memory = torch.cuda.max_memory_allocated(model.device)
# print(memory)
# print(profile(model.mask_decoder,(image_embeddings,model.prompt_encoder.get_dense_pe(),sparse_embeddings,dense_embeddings,True))[0])
if multimask:
max_values, max_indexs = torch.max(iou_predictions, dim=1)
max_values = max_values.unsqueeze(1)
iou_predictions = max_values
low_res = []
for i, idx in enumerate(max_indexs):
low_res.append(low_res_masks[i:i+1, idx])
low_res_masks = torch.stack(low_res, 0)
masks = F.interpolate(low_res_masks, (target_size, target_size), mode="bilinear", align_corners=False,)
return masks, low_res_masks, iou_predictions, t
def repixel_value(arr, is_seg=False):
if not is_seg:
min_val = arr.min()
max_val = arr.max()
new_arr = (arr - min_val) / (max_val - min_val + 1e-10) * 255.
return new_arr
def random_point_sampling(mask, get_point = 1):
if isinstance(mask, torch.Tensor):
mask = mask.numpy()
fg_coords = np.argwhere(mask == 1)[:,::-1]
bg_coords = np.argwhere(mask == 0)[:,::-1]
fg_size = len(fg_coords)
bg_size = len(bg_coords)
if get_point == 1:
if fg_size > 0:
index = np.random.randint(fg_size)
fg_coord = fg_coords[index]
label = 1
else:
index = np.random.randint(bg_size)
fg_coord = bg_coords[index]
label = 0
return torch.as_tensor([fg_coord.tolist()], dtype=torch.float), torch.as_tensor([label], dtype=torch.int)
else:
num_fg = get_point // 2
num_bg = get_point - num_fg
fg_indices = np.random.choice(fg_size, size=num_fg, replace=True)
bg_indices = np.random.choice(bg_size, size=num_bg, replace=True)
fg_coords = fg_coords[fg_indices]
bg_coords = bg_coords[bg_indices]
coords = np.concatenate([fg_coords, bg_coords], axis=0)
labels = np.concatenate([np.ones(num_fg), np.zeros(num_bg)]).astype(int)
indices = np.random.permutation(get_point)
coords, labels = torch.as_tensor(coords[indices], dtype=torch.float), torch.as_tensor(labels[indices], dtype=torch.int)
return coords, labels
def finetune_model_predict2D(img3D, gt3D, sam_model_tune, target_size=256, click_method='random', device='cuda', num_clicks=1, prev_masks=None):
pred_list = []
iou_list = []
dice_list = []
slice_mask_list = defaultdict(list)
memory = []
img3D = torch.repeat_interleave(img3D, repeats=3, dim=1) # 1 channel -> 3 channel (align to RG)
click_points = []
click_labels = []
dt = 0
t = 0
for slice_idx in tqdm(range(img3D.size(-1)), desc="transverse slices", leave=False):
img2D, gt2D = repixel_value(img3D[..., slice_idx]), gt3D[..., slice_idx]
if (gt2D==0).all():
empty_result = torch.zeros(list(gt3D.size()[:-1])+[1]).to(device)
for iter in range(num_clicks):
slice_mask_list[iter].append(empty_result)
continue
img2D = F.interpolate(img2D, (target_size, target_size), mode="bilinear", align_corners=False)
gt2D = F.interpolate(gt2D.float(), (target_size, target_size), mode="nearest").int()
img2D, gt2D = img2D.to(device), gt2D.to(device)
img2D = (img2D - img2D.mean()) / img2D.std()
torch.cuda.reset_max_memory_allocated(device)
with torch.no_grad():
image_embeddings,times = sam_model_tune.image_encoder(img2D.float())
t += times
# print(profile(sam_model_tune.image_encoder,(img2D.float().to(device),))[0])
memory.append(torch.cuda.max_memory_allocated(device))
points_co, points_la = torch.zeros(1,0,2).to(device), torch.zeros(1,0).to(device)
low_res_masks = None
gt_semantic_seg = gt2D[0, 0].to(device)
true_masks = (gt_semantic_seg > 0)
decodetimes = 0
for iter in range(num_clicks):
if(low_res_masks==None):
pred_masks = torch.zeros_like(true_masks).to(device)
else:
pred_masks = (prev_masks[0, 0] > 0.0).to(device)
fn_masks = torch.logical_and(true_masks, torch.logical_not(pred_masks))
fp_masks = torch.logical_and(torch.logical_not(true_masks), pred_masks)
mask_to_sample = torch.logical_or(fn_masks, fp_masks)
new_points_co, _ = random_point_sampling(mask_to_sample.cpu(), get_point=1)
new_points_la = torch.Tensor([1]).to(torch.int64) if(true_masks[new_points_co[0,1].int(), new_points_co[0,0].int()]) else torch.Tensor([0]).to(torch.int64)
new_points_co, new_points_la = new_points_co[None].to(device), new_points_la[None].to(device)
points_co = torch.cat([points_co, new_points_co],dim=1)
points_la = torch.cat([points_la, new_points_la],dim=1)
prev_masks, low_res_masks, iou_predictions,decodetime = sam_decoder_inference(
target_size, points_co, points_la, sam_model_tune, image_embeddings,
mask_inputs = low_res_masks,multimask = True)
click_points.append(new_points_co)
click_labels.append(new_points_la)
decodetimes += decodetime
slice_mask, _ = postprocess_masks(low_res_masks, target_size, (gt3D.size(2), gt3D.size(3)))
slice_mask_list[iter].append(slice_mask[..., None]) # append (B, C, H, W, 1)
dt += decodetimes / num_clicks
for iter in range(num_clicks):
medsam_seg = torch.cat(slice_mask_list[iter], dim=-1).cpu().numpy().squeeze()
medsam_seg = medsam_seg > sam_model_tune.mask_threshold
medsam_seg = medsam_seg.astype(np.uint8)
pred_list.append(medsam_seg)
iou_list.append(round(compute_iou(medsam_seg, gt3D[0][0].detach().cpu().numpy()), 4))
dice_list.append(round(compute_dice(gt3D[0][0].detach().cpu().numpy().astype(np.uint8), medsam_seg), 4))
print(t)
print(dt)
print(np.average(memory))
return pred_list, click_points, click_labels, iou_list, dice_list,t,dt
def finetune_model_predict3D(img3D, gt3D, sam_model_tune, device='cuda', click_method='random', num_clicks=10, prev_masks=None):
torch.cuda.reset_max_memory_allocated(device)
encoder_time = 0 #
decoder_time = []
img3D = norm_transform(img3D.squeeze(dim=1)) # (N, C, W, H, D)
img3D = img3D.unsqueeze(dim=1)
click_points = []
click_labels = []
FLOPS = np.zeros(num_clicks)
pred_list = []
iou_list = []
dice_list = []
if prev_masks is None:
prev_masks = torch.zeros_like(gt3D).to(device)
low_res_masks = F.interpolate(prev_masks.float(), size=(args.crop_size//4,args.crop_size//4,args.crop_size//4))
start_time = time.time()
with torch.no_grad():
image_embedding,times = sam_model_tune.image_encoder(img3D.to(device)) # (1, 384, 16, 16, 16)
image_embedding = image_embedding[-1]
memory_before = torch.cuda.max_memory_allocated(device)
# print(memory_before) #
torch.cuda.reset_max_memory_allocated(device)
for num_click in range(num_clicks):
#
with torch.no_grad():
if(num_click>1):
click_method = "random"
batch_points, batch_labels = click_methods[click_method](prev_masks.to(device), gt3D.to(device))
points_co = torch.cat(batch_points, dim=0).to(device)
points_la = torch.cat(batch_labels, dim=0).to(device)
click_points.append(points_co)
click_labels.append(points_la)
points_input = points_co
labels_input = points_la
sparse_embeddings, dense_embeddings = sam_model_tune.prompt_encoder(
points=[points_input, labels_input],
boxes=None, #
masks=low_res_masks.to(device),
)
FLOPS[num_click] += profile(sam_model_tune.prompt_encoder,([points_input, labels_input],None,low_res_masks.to(device),))[0]
start_time = time.time()
low_res_masks, _ = sam_model_tune.mask_decoder(
image_embeddings=image_embedding.to(device), # (B, 384, 64, 64, 64)
image_pe=sam_model_tune.prompt_encoder.get_dense_pe(), # (1, 384, 64, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 384)
dense_prompt_embeddings=dense_embeddings, # (B, 384, 64, 64, 64)
multimask_output=False,
)
FLOPS[num_click] += profile(sam_model_tune.mask_decoder,(image_embedding,sam_model_tune.prompt_encoder.get_dense_pe(),sparse_embeddings,dense_embeddings,False,))[0]
# end_time = time.time()
# decoder_time.append(end_time - start_time)
memory_decoder = torch.cuda.max_memory_allocated(device) #
# print(memory_decoder)
prev_masks = F.interpolate(low_res_masks, size=gt3D.shape[-3:], mode='trilinear', align_corners=False)
medsam_seg_prob = torch.sigmoid(prev_masks) # (B, 1, 64, 64, 64)
# convert prob to mask
medsam_seg_prob = medsam_seg_prob.cpu().numpy().squeeze()
medsam_seg = (medsam_seg_prob > 0.5).astype(np.uint8)
pred_list.append(medsam_seg)
iou_list.append(round(compute_iou(medsam_seg, gt3D[0][0].detach().cpu().numpy()), 4))
dice_list.append(round(compute_dice(gt3D[0][0].detach().cpu().numpy().astype(np.uint8), medsam_seg), 4))
# print(np.average(FLOPS))
return pred_list, click_points, click_labels, iou_list, dice_list,encoder_time,decoder_time,memory_before, memory_decoder, FLOPS
if __name__ == "__main__":
st = time.time()
all_dataset_paths = glob(join(args.test_data_path))
all_dataset_paths = list(filter(os.path.isdir, all_dataset_paths))
print("get", len(all_dataset_paths), "datasets")
infer_transform = [
tio.ToCanonical(),
tio.CropOrPad(mask_name='label', target_shape=(args.crop_size,args.crop_size,args.crop_size)),
]
test_dataset = Dataset_Union_ALL_Val(
paths=all_dataset_paths,
mode="Val",
data_type=args.data_type,
transform=tio.Compose(infer_transform),
threshold=0,
split_num=args.split_num,
split_idx=args.split_idx,
pcc=False,
)
test_dataloader = DataLoader(
dataset=test_dataset,
sampler=None,
batch_size=1,
shuffle=True
)
checkpoint_path = args.checkpoint_path
device = args.device
print("device:", device)
if(args.dim==3):
sam_model_tune = sam_model_registry3D[args.model_type](checkpoint=None).to(device)
if checkpoint_path is not None:
model_dict = torch.load(checkpoint_path, map_location=device)
state_dict = model_dict['model_state_dict']
sam_model_tune.load_state_dict(state_dict)
elif(args.dim==2):
args.sam_checkpoint = args.checkpoint_path
sam_model_tune = sam_model_registry[args.model_type](args.checkpoint_path).to(device)
sam_trans = ResizeLongestSide3D(sam_model_tune.image_encoder.img_size)
all_iou_list = []
all_dice_list = []
out_dice = dict()
out_dice_all = OrderedDict()
encoder_times = []
decoder_times = []
average_decoder_times = []
memory_befores = []
memory_decoders=[]
FLOPSS = []
w = []
for batch_data in tqdm(test_dataloader):
for i in range(0,1):
image3D, gt3D, img_name = batch_data
image3D = image3D.float()
image3D=image3D.to(device)
sz = image3D.size()
if(sz[2]<args.crop_size or sz[3]<args.crop_size or sz[4]<args.crop_size):
print("[ERROR] wrong size", sz, "for", img_name)
modality = os.path.basename(os.path.dirname(os.path.dirname(os.path.dirname(img_name[0]))))
dataset = os.path.basename(os.path.dirname(os.path.dirname(img_name[0])))
vis_root = os.path.join(os.path.dirname(__file__), args.vis_path, modality, dataset)
click_suffix = f"_pred{args.num_clicks - 1}.nii.gz"
pred_path = os.path.join(vis_root, os.path.basename(img_name[0]).replace(".nii.gz", click_suffix))
sam_model = sam_model_registry3D['vit_b_ori'](checkpoint=None).to(device)
model_dict = torch.load('./ckpt/sam_med3d_turbo.pth', map_location=device)
state_dict = model_dict['model_state_dict']
sam_model.load_state_dict(state_dict)
image_embedding = sam_model.image_encoder(image3D)
start_time = time.time()
end_time = time.time()
elapsed_time = end_time - start_time
print(f"self.interaction excution time:{elapsed_time} seconds")
if(1 == 0):
iou_list, dice_list = [], []
for iter in range(args.num_clicks):
curr_pred_path = os.path.join(vis_root, os.path.basename(img_name[0]).replace(".nii.gz", f"_pred{iter}.nii.gz"))
medsam_seg = sitk.GetArrayFromImage(sitk.ReadImage(curr_pred_path))
iou_list.append(round(compute_iou(medsam_seg, gt3D[0][0].detach().cpu().numpy()), 4))
dice_list.append(round(compute_dice(gt3D[0][0].detach().cpu().numpy().astype(np.uint8), medsam_seg), 4))
else:
norm_transform = tio.ZNormalization(masking_method=lambda x: x > 0)
if(args.dim==3):
seg_mask_list, points, labels, iou_list, dice_list,t,decoder_time,memory_before, memory_decoder, FLOPS = finetune_model_predict3D(
image3D, gt3D, sam_model_tune, device=device,
click_method=args.point_method, num_clicks=args.num_clicks,
prev_masks=None)
elif(args.dim==2):
seg_mask_list, points, labels, iou_list, dice_list,t,decoder_time = finetune_model_predict2D(
image3D, gt3D, sam_model_tune, device=device, target_size=args.image_size,
click_method=args.point_method, num_clicks=args.num_clicks,
prev_masks=None)
os.makedirs(vis_root, exist_ok=True)
points = [p.cpu().numpy() for p in points]
labels = [l.cpu().numpy() for l in labels]
pt_info = dict(points=points, labels=labels)
print("save to", os.path.join(vis_root, os.path.basename(img_name[0]).replace(".nii.gz", "_pred.nii.gz")))
pt_path=os.path.join(vis_root, os.path.basename(img_name[0]).replace(".nii.gz", "_pt.pkl"))
pickle.dump(pt_info, open(pt_path, "wb"))
for idx, pred3D in enumerate(seg_mask_list):
out = sitk.GetImageFromArray(pred3D)
sitk.WriteImage(out, os.path.join(vis_root, os.path.basename(img_name[0]).replace(".nii.gz", f"_pred{idx}.nii.gz")))
per_iou = max(iou_list)
all_iou_list.append(per_iou)
all_dice_list.append(max(dice_list))
print(dice_list)
out_dice[img_name] = max(dice_list)
cur_dice_dict = OrderedDict()
encoder_times.append(t)
decoder_times.append(decoder_time)
for i, dice in enumerate(dice_list):
cur_dice_dict[f'{i}'] = dice
out_dice_all[img_name[0]] = cur_dice_dict
print('Mean IoU : ', sum(all_iou_list)/len(all_iou_list))
print('Mean Dice: ', sum(all_dice_list)/len(all_dice_list))
final_dice_dict = OrderedDict()
for k, v in out_dice_all.items():
organ = k.split('/')[-4]
final_dice_dict[organ] = OrderedDict()
for k, v in out_dice_all.items():
organ = k.split('/')[-4]
final_dice_dict[organ][k] = v
if(args.split_num>1):
args.save_name = args.save_name.replace('.py', f'_s{args.split_num}i{args.split_idx}.py')
print("Save to", args.save_name)
with open(args.save_name, 'w') as f:
f.writelines(f'# mean dice: \t{np.mean(all_dice_list)}\n')
f.writelines('dice_Ts = {')
for k, v in out_dice.items():
f.writelines(f'\'{str(k[0])}\': {v},\n')
with open(args.save_name.replace('.py', '.json'), 'w') as f:
json.dump(final_dice_dict, f, indent=4)
print(np.mean(encoder_times))
print(np.mean(decoder_times))
print("Done")
eo=time.time()-st
print(eo)