forked from SeanNaren/deepspeech.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
140 lines (113 loc) · 5.86 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import json
import os
import time
import torch
import torch.distributed as dist
import torch.utils.data.distributed
from apex import amp
from apex.parallel import DistributedDataParallel
from tqdm import tqdm
from tqdm import trange
from warpctc_pytorch import CTCLoss
from deepspeech_pytorch.model import DeepSpeech, supported_rnns
parser = argparse.ArgumentParser(description="Benchmark script to check stability of training with CUDA. "
"Assumes a few hardcoded defaults which shouldn't make a large difference")
parser.add_argument('--batch-size', type=int, default=32, help='Size of input')
parser.add_argument('--seconds', type=int, default=15,
help='The size of the fake input in seconds using default stride of 0.01, '
'15s is usually the maximum duration')
parser.add_argument('--dry-runs', type=int, default=2, help='Dry runs before measuring performance')
parser.add_argument('--runs', type=int, default=5, help='How many benchmark runs to measure performance')
parser.add_argument('--labels-path', default='labels.json', help='Path to the labels to infer over in the model')
parser.add_argument('--hidden-size', default=1024, type=int, help='Hidden size of RNNs')
parser.add_argument('--hidden-layers', default=5, type=int, help='Number of RNN layers')
parser.add_argument('--rnn-type', default='lstm', help='Type of the RNN. rnn|gru|lstm are supported')
parser.add_argument('--sample-rate', default=16000, type=int, help='Sample rate')
parser.add_argument('--window-size', default=.02, type=float, help='Window size for spectrogram in seconds')
parser.add_argument('--num-samples', default=1024, type=int, help='Number of samples to go through')
parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend')
parser.add_argument('--opt-level', type=str,
help='Apex optimization level,'
'check https://nvidia.github.io/apex/amp.html for more information')
parser.add_argument('--keep-batchnorm-fp32', type=str, default=None,
help='Overrides Apex keep_batch_norm_fp32 flag')
parser.add_argument('--loss-scale', default=1,
help='Loss scaling used by Apex. Default is 1 due to warp-ctc not supporting scaling of gradients')
parser.add_argument('--no-bidirectional', dest='bidirectional', action='store_false', default=True,
help='Turn off bi-directional RNNs, introduces lookahead convolution')
args = parser.parse_args()
device = torch.device("cuda")
args.distributed = os.environ.get("LOCAL_RANK") # If local rank exists, distributed env
if args.distributed:
device_id = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(device_id)
print(f"Setting CUDA Device to {device_id}")
dist.init_process_group(backend=args.dist_backend)
if args.distributed:
input_data = torch.randn(int(args.num_samples / dist.get_world_size()), 1, 161, args.seconds * 100)
else:
input_data = torch.randn(args.num_samples, 1, 161, args.seconds * 100)
input_data = input_data.to(device)
input_data = torch.chunk(input_data, int(len(input_data) / args.batch_size))
rnn_type = args.rnn_type.lower()
assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"
with open(args.labels_path) as label_file:
labels = str(''.join(json.load(label_file)))
audio_conf = dict(sample_rate=args.sample_rate,
window_size=args.window_size)
model = DeepSpeech(rnn_hidden_size=args.hidden_size,
nb_layers=args.hidden_layers,
audio_conf=audio_conf,
labels=labels,
rnn_type=supported_rnns[rnn_type],
bidirectional=args.bidirectional)
model = model.to(device)
parameters = model.parameters()
optimizer = torch.optim.SGD(parameters, lr=3e-4, momentum=0.9, nesterov=True, weight_decay=1e-5)
model, optimizer = amp.initialize(model, optimizer,
opt_level=args.opt_level,
keep_batchnorm_fp32=args.keep_batchnorm_fp32,
loss_scale=args.loss_scale)
print("Number of parameters: %d" % DeepSpeech.get_param_size(model))
if args.distributed:
model = DistributedDataParallel(model, device_ids=[device_id])
criterion = CTCLoss()
seconds = int(args.seconds)
batch_size = int(args.batch_size)
def iteration(inputs):
# targets, align half of the audio
targets = torch.ones(int(batch_size * ((seconds * 100) / 2)))
target_sizes = torch.empty(batch_size, dtype=torch.int).fill_(int((seconds * 100) / 2))
input_percentages = torch.ones(batch_size).fill_(1)
input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
out, output_sizes = model(inputs, input_sizes)
out = out.transpose(0, 1) # TxNxH
float_out = out.float() # ensure float32 for loss
loss = criterion(float_out, targets, output_sizes, target_sizes)
loss = loss / inputs.size(0) # average the loss by minibatch
optimizer.zero_grad()
# compute gradient
optimizer.zero_grad()
# compute gradient
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 400)
optimizer.step()
del loss, out, float_out
def run_benchmark():
print("Running dry runs...")
for n in trange(args.dry_runs):
for data in tqdm(input_data, total=len(input_data)):
iteration(data)
print("\n Running measured runs...")
running_time = 0
for n in trange(args.runs):
start_time = time.time()
for data in tqdm(input_data, total=len(input_data)):
iteration(data)
end_time = time.time()
running_time += (end_time - start_time)
return running_time / float(args.runs)
run_time = run_benchmark()
print("\n Average run time: %.2fs" % run_time)