forked from DataDog/dd-agent
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
269 lines (222 loc) · 8.22 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# (C) Datadog, Inc. 2010-2016
# All rights reserved
# Licensed under Simplified BSD License (see LICENSE)
# stdlib
from collections import deque
import logging
import os
import platform
import re
import signal
import sys
import time
import uuid
# 3p
import yaml # noqa, let's guess, probably imported somewhere
try:
from yaml import CLoader as yLoader
from yaml import CDumper as yDumper
except ImportError:
# On source install C Extensions might have not been built
from yaml import Loader as yLoader # noqa, imported from here elsewhere
from yaml import Dumper as yDumper # noqa, imported from here elsewhere
# These classes are now in utils/, they are just here for compatibility reasons,
# if a user actually uses them in a custom check
# If you're this user, please use utils/* instead
# FIXME: remove them at a point (6.x)
from utils.pidfile import PidFile # noqa, see ^^^
from utils.platform import Platform, get_os # noqa, see ^^^
from utils.proxy import get_proxy # noqa, see ^^^
COLON_NON_WIN_PATH = re.compile(':(?!\\\\)')
log = logging.getLogger(__name__)
NumericTypes = (float, int, long)
def plural(count):
if count == 1:
return ""
return "s"
def get_uuid():
# Generate a unique name that will stay constant between
# invocations, such as platform.node() + uuid.getnode()
# Use uuid5, which does not depend on the clock and is
# recommended over uuid3.
# This is important to be able to identify a server even if
# its drives have been wiped clean.
# Note that this is not foolproof but we can reconcile servers
# on the back-end if need be, based on mac addresses.
return uuid.uuid5(uuid.NAMESPACE_DNS, platform.node() + str(uuid.getnode())).hex
def headers(agentConfig, **kwargs):
# Build the request headers
res = {
'User-Agent': 'Datadog Agent/%s' % agentConfig['version'],
'Content-Type': 'application/x-www-form-urlencoded',
'Accept': 'text/html, */*',
}
if 'http_host' in kwargs:
res['Host'] = kwargs['http_host']
return res
def windows_friendly_colon_split(config_string):
'''
Perform a split by ':' on the config_string
without splitting on the start of windows path
'''
if Platform.is_win32():
# will split on path/to/module.py:blabla but not on C:\\path
return COLON_NON_WIN_PATH.split(config_string)
else:
return config_string.split(':')
def cast_metric_val(val):
# ensure that the metric value is a numeric type
if not isinstance(val, NumericTypes):
# Try the int conversion first because want to preserve
# whether the value is an int or a float. If neither work,
# raise a ValueError to be handled elsewhere
for cast in [int, float]:
try:
val = cast(val)
return val
except ValueError:
continue
raise ValueError
return val
_IDS = {}
def get_next_id(name):
global _IDS
current_id = _IDS.get(name, 0)
current_id += 1
_IDS[name] = current_id
return current_id
def check_yaml(conf_path):
with open(conf_path) as f:
check_config = yaml.load(f.read(), Loader=yLoader)
assert 'init_config' in check_config, "No 'init_config' section found"
assert 'instances' in check_config, "No 'instances' section found"
valid_instances = True
if check_config['instances'] is None or not isinstance(check_config['instances'], list):
valid_instances = False
else:
for i in check_config['instances']:
if not isinstance(i, dict):
valid_instances = False
break
if not valid_instances:
raise Exception('You need to have at least one instance defined in the YAML file for this check')
else:
return check_config
def config_to_yaml(config):
'''
Convert a config dict to YAML
'''
assert 'init_config' in config, "No 'init_config' section found"
assert 'instances' in config, "No 'instances' section found"
valid_instances = True
if config['instances'] is None or not isinstance(config['instances'], list):
valid_instances = False
else:
yaml_output = yaml.safe_dump(config, default_flow_style=False)
if not valid_instances:
raise Exception('You need to have at least one instance defined in your config.')
return yaml_output
class Watchdog(object):
"""
Simple signal-based watchdog. Restarts the process when:
* no reset was made for more than a specified duration
* (optional) a specified memory threshold is exceeded
* (optional) a suspicious high activity is detected, i.e. too many resets for a given timeframe.
**Warning**: Not thread-safe.
Can only be invoked once per process, so don't use with multiple threads.
If you instantiate more than one, you're also asking for trouble.
"""
# Activity history timeframe
_RESTART_TIMEFRAME = 60
def __init__(self, duration, max_mem_mb=None, max_resets=None):
import resource
# Set the duration
self._duration = int(duration)
signal.signal(signal.SIGALRM, Watchdog.self_destruct)
# Set memory usage threshold
if max_mem_mb is not None:
self._max_mem_kb = 1024 * max_mem_mb
max_mem_bytes = 1024 * self._max_mem_kb
resource.setrlimit(resource.RLIMIT_AS, (max_mem_bytes, max_mem_bytes))
self.memory_limit_enabled = True
else:
self.memory_limit_enabled = False
# Set high activity monitoring
self._restarts = deque([])
self._max_resets = max_resets
@staticmethod
def self_destruct(signum, frame):
"""
Kill the process. It will be eventually restarted.
"""
try:
import traceback
log.error("Self-destructing...")
log.error(traceback.format_exc())
finally:
os.kill(os.getpid(), signal.SIGKILL)
def _is_frenetic(self):
"""
Detect suspicious high activity, i.e. the number of resets exceeds the maximum limit set
on the watchdog timeframe.
Flush old activity history
"""
now = time.time()
while(self._restarts and self._restarts[0] < now - self._RESTART_TIMEFRAME):
self._restarts.popleft()
return len(self._restarts) > self._max_resets
def reset(self):
"""
Reset the watchdog state, i.e.
* re-arm alarm signal
* (optional) check memory consumption
* (optional) save reset history, flush old entries and check frequency
"""
# Check memory consumption: restart if too high as tornado will swallow MemoryErrors
if self.memory_limit_enabled:
mem_usage_kb = int(os.popen('ps -p %d -o %s | tail -1' % (os.getpid(), 'rss')).read())
if mem_usage_kb > (0.95 * self._max_mem_kb):
Watchdog.self_destruct(signal.SIGKILL, sys._getframe(0))
# Check activity
if self._max_resets:
self._restarts.append(time.time())
if self._is_frenetic():
Watchdog.self_destruct(signal.SIGKILL, sys._getframe(0))
# Re arm alarm signal
log.debug("Resetting watchdog for %d" % self._duration)
signal.alarm(self._duration)
class Timer(object):
""" Helper class """
def __init__(self):
self.start()
def _now(self):
return time.time()
def start(self):
self.started = self._now()
self.last = self.started
return self
def step(self):
now = self._now()
step = now - self.last
self.last = now
return step
def total(self, as_sec=True):
return self._now() - self.started
"""
Iterable Recipes
"""
def chunks(iterable, chunk_size):
"""Generate sequences of `chunk_size` elements from `iterable`."""
iterable = iter(iterable)
while True:
chunk = [None] * chunk_size
count = 0
try:
for _ in range(chunk_size):
chunk[count] = iterable.next()
count += 1
yield chunk[:count]
except StopIteration:
if count:
yield chunk[:count]
break