-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebiasnet.py
98 lines (76 loc) · 4.81 KB
/
debiasnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""
Full debiasnet model
"""
import tensorflow as tf
from flip_gradient import flip_gradient
def get_through_mlp(input, mlplayers, activ, dropout):
mapped = input
for i in range(len(mlplayers)):
mapped = tf.layers.dense(mapped, mlplayers[i], activation = activ, name = "mlplay_" + str(i+1), reuse = tf.AUTO_REUSE)
return tf.nn.dropout(mapped, dropout)
def cosine_distance(t1, t2):
return tf.constant(1.0, dtype = tf.float32) - tf.reduce_sum(tf.multiply(tf.nn.l2_normalize(t1, axis = 1), tf.nn.l2_normalize(t2, axis = 1)), axis = 1)
def cosine_similarity(t1, t2):
return tf.reduce_sum(tf.multiply(tf.nn.l2_normalize(t1, axis = 1), tf.nn.l2_normalize(t2, axis = 1)), axis = 1)
def asym_distance(t1, t2):
n1 = tf.norm(t1, axis = 1)
n2 = tf.norm(t2, axis = 1)
return tf.div(tf.subtract(n1, n2), tf.add(n1, n2))
def le_distance(t1, t2, asym_fact):
return cosine_distance(t1, t2) + asym_fact * asym_distance(t1, t2)
def hinge_loss(true_ledists, false_ledists, margin):
return tf.reduce_sum(tf.maximum(tf.subtract(tf.constant(margin, dtype = tf.float32), tf.subtract(false_ledists, true_ledists)), 0.0))
class DebiasNetModel(object): # setting the adversarial grad scale to -1 turns of the flipping of the gradient
def __init__(self, embs, mlp_layers, activation = tf.nn.tanh, scope = "debie", reg_factor = 0.1, learning_rate = 0.0001, adversarial_grad_scale=1.0, i_factor=1.0, e_factor=1.0):
self.embeddings = embs
self.scope = scope
with tf.name_scope(self.scope + "__placeholders"):
# init
self.target_1 = tf.placeholder(tf.int32, [None,], name="t1")
self.target_2 = tf.placeholder(tf.int32, [None,], name="t2")
self.attribute = tf.placeholder(tf.int32, [None,], name="a")
self.dropout = tf.placeholder(tf.float32, name="dropout")
with tf.name_scope(self.scope + "__model"):
# embedding lookup
self.embeddings = tf.get_variable("word_embeddings", initializer=embs, dtype = tf.float32, trainable = False)
self.embs_target_1 = tf.nn.embedding_lookup(self.embeddings, self.target_1)
self.embs_target_2 = tf.nn.embedding_lookup(self.embeddings, self.target_2)
self.embs_attribute = tf.nn.embedding_lookup(self.embeddings, self.attribute)
# MLPs (with or without shared parameters, depending on same_mapper)
print("Mapping through MLP...")
self.mapped_target_1 = get_through_mlp(self.embs_target_1, mlp_layers, activation, self.dropout)
self.mapped_target_2 = get_through_mlp(self.embs_target_2, mlp_layers, activation, self.dropout)
self.mapped_attribute = get_through_mlp(self.embs_attribute, mlp_layers, activation, self.dropout)
print("Compute losses..")
# Explicit debiasing objective
self.l_e = tf.reduce_sum(tf.math.squared_difference(cosine_similarity(self.mapped_target_1, self.mapped_attribute),
cosine_similarity(self.mapped_target_2, self.mapped_attribute)))
# regularization objective
self.l_r = tf.reduce_sum(cosine_distance(self.embs_target_1, self.mapped_target_1)) \
+ tf.reduce_sum(cosine_distance(self.embs_target_2, self.mapped_target_2)) \
+ tf.reduce_sum(cosine_distance(self.embs_attribute, self.mapped_attribute))
# tensors have to have the same rank
self.mapped_targets = tf.concat([self.mapped_target_1, self.mapped_target_2], axis=0)
self.adverserial_labels_1 = tf.reduce_mean(tf.zeros_like(self.mapped_target_1, tf.int32), axis=1)
self.adversarial_labels_2 = tf.reduce_mean(tf.ones_like(self.mapped_target_2, tf.int32), axis=1)
self.adversarial_labels = tf.concat([self.adverserial_labels_1, self.adversarial_labels_2], axis=0)
self.f_targets = flip_gradient(self.mapped_targets, adversarial_grad_scale)
# simple classifier
hidden_size = self.f_targets.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [2, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [2], initializer=tf.zeros_initializer())
logits = tf.matmul(self.f_targets, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
with tf.variable_scope("adversarial_loss"):
one_hot_labels = tf.squeeze(tf.one_hot(self.adversarial_labels, depth=2, dtype=tf.float32))
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
self.l_i = tf.reduce_mean(per_example_loss)
self.l_total = e_factor * self.l_e + i_factor * self.l_i + reg_factor * self.l_r
self.train_step= tf.train.AdamOptimizer(learning_rate).minimize(self.l_total)
def replace_embs(self, embs, session):
assign_op = self.embeddings.assign(embs)
session.run(assign_op)