-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
43 lines (28 loc) · 1.29 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import torch.utils
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from constants import DEVICE
class TemperatureDataset(Dataset):
def __init__(self, x, y):
super(TemperatureDataset, self).__init__()
x = x.reshape(x.shape[0], 1, x.shape[1])
self.x = torch.from_numpy(x).type(torch.FloatTensor).to(DEVICE)
self.y = torch.from_numpy(y).type(torch.LongTensor).to(DEVICE)
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
def get_datasets(train_data, train_labels, test_data, test_labels):
train_dataset = TemperatureDataset(train_data, train_labels)
test_dataset = TemperatureDataset(test_data, test_labels)
return train_dataset, test_dataset
def get_dataloaders(train_dataset, test_dataset):
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=8)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=True, num_workers=8)
return train_loader, test_loader
def scaffold_loaders(train_data, train_labels, test_data, test_labels):
train_dataset, test_dataset = get_datasets(
train_data, train_labels, test_data, test_labels
)
return get_dataloaders(train_dataset, test_dataset)