forked from greydanus/hamiltonian-nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
112 lines (90 loc) · 3.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Sam Greydanus, Misko Dzama, Jason Yosinski
# 2019 | Google AI Residency Project "Hamiltonian Neural Networks"
import numpy as np
import os, torch, pickle, zipfile
import imageio, shutil
import scipy, scipy.misc, scipy.integrate
solve_ivp = scipy.integrate.solve_ivp
def integrate_model(model, t_span, y0, fun=None, **kwargs):
def default_fun(t, np_x):
x = torch.tensor( np_x, requires_grad=True, dtype=torch.float32)
x = x.view(1, np.size(np_x)) # batch size of 1
dx = model.time_derivative(x).data.numpy().reshape(-1)
return dx
fun = default_fun if fun is None else fun
return solve_ivp(fun=fun, t_span=t_span, y0=y0, **kwargs)
def rk4(fun, y0, t, dt, *args, **kwargs):
dt2 = dt / 2.0
k1 = fun(y0, t, *args, **kwargs)
k2 = fun(y0 + dt2 * k1, t + dt2, *args, **kwargs)
k3 = fun(y0 + dt2 * k2, t + dt2, *args, **kwargs)
k4 = fun(y0 + dt * k3, t + dt, *args, **kwargs)
dy = dt / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4)
return dy
def L2_loss(u, v):
return (u-v).pow(2).mean()
def read_lipson(experiment_name, save_dir):
desired_file = experiment_name + ".txt"
with zipfile.ZipFile('{}/invar_datasets.zip'.format(save_dir)) as z:
for filename in z.namelist():
if desired_file == filename and not os.path.isdir(filename):
with z.open(filename) as f:
data = f.read()
return str(data)
def str2array(string):
lines = string.split('\\n')
names = lines[0].strip("b'% \\r").split(' ')
dnames = ['d' + n for n in names]
names = ['trial', 't'] + names + dnames
data = [[float(s) for s in l.strip("' \\r,").split( )] for l in lines[1:-1]]
return np.asarray(data), names
def to_pickle(thing, path): # save something
with open(path, 'wb') as handle:
pickle.dump(thing, handle, protocol=pickle.HIGHEST_PROTOCOL)
def from_pickle(path): # load something
thing = None
with open(path, 'rb') as handle:
thing = pickle.load(handle)
return thing
def choose_nonlinearity(name):
nl = None
if name == 'tanh':
nl = torch.tanh
elif name == 'relu':
nl = torch.relu
elif name == 'sigmoid':
nl = torch.sigmoid
elif name == 'softplus':
nl = torch.nn.functional.softplus
elif name == 'selu':
nl = torch.nn.functional.selu
elif name == 'elu':
nl = torch.nn.functional.elu
elif name == 'swish':
nl = lambda x: x * torch.sigmoid(x)
else:
raise ValueError("nonlinearity not recognized")
return nl
def make_gif(frames, save_dir, name='pendulum', duration=1e-1, pixels=None, divider=0):
'''Given a three dimensional array [frames, height, width], make
a gif and save it.'''
temp_dir = './_temp'
os.mkdir(temp_dir) if not os.path.exists(temp_dir) else None
for i in range(len(frames)):
im = (frames[i].clip(-.5,.5) + .5)*255
im[divider,:] = 0
im[divider + 1,:] = 255
if pixels is not None:
im = scipy.misc.imresize(im, pixels)
scipy.misc.imsave(temp_dir + '/f_{:04d}.png'.format(i), im)
images = []
for file_name in sorted(os.listdir(temp_dir)):
if file_name.endswith('.png'):
file_path = os.path.join(temp_dir, file_name)
images.append(imageio.imread(file_path))
save_path = '{}/{}.gif'.format(save_dir, name)
png_save_path = '{}.png'.format(save_path)
imageio.mimsave(save_path, images, duration=duration)
os.rename(save_path, png_save_path)
shutil.rmtree(temp_dir) # remove all the images
return png_save_path