-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.m
43 lines (39 loc) · 1.33 KB
/
Model.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
classdef Model
properties
Hidden_layer_sizes
Learning_rate
Momentum
Regularization
Weights
Activation_functions
Final_train_error
Final_valid_error
end
methods
% Constructor method
function obj = Model(hiddens_sizes, eta, alpha, lambda, w, act_functions, train_err, valid_err)
if nargin > 0
obj.Hidden_layer_sizes = hiddens_sizes;
obj.Learning_rate = eta;
obj.Momentum = alpha;
obj.Regularization = lambda;
obj.Weights = w;
obj.Activation_functions = act_functions;
obj.Final_train_error = train_err;
obj.Final_valid_error = valid_err;
end
end
% Use the model to predict the outputs, given the inputs
function output = Predict(this, data)
O_prev_layer = data;
for i = 1 : length(this.Weights)
W = this.Weights{i, 1};
act_fun = this.Activation_functions{i};
O_prev_layer_with_biases = [O_prev_layer, ones(size(O_prev_layer, 1), 1)];
[O_curr_layer, ~] = act_fun(O_prev_layer_with_biases * W);
O_prev_layer = O_curr_layer;
end
output = O_curr_layer;
end
end
end