forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathkth-largest-element-in-an-array.py
74 lines (64 loc) · 2.62 KB
/
kth-largest-element-in-an-array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Time: O(n) on average, using Median of Medians could achieve O(n) (Intro Select)
# Space: O(1)
from random import randint
# optimized for duplicated nums
class Solution(object):
def findKthLargest(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
def nth_element(nums, n, compare=lambda a, b: a < b):
def tri_partition(nums, left, right, target, compare):
mid = left
while mid <= right:
if nums[mid] == target:
mid += 1
elif compare(nums[mid], target):
nums[left], nums[mid] = nums[mid], nums[left]
left += 1
mid += 1
else:
nums[mid], nums[right] = nums[right], nums[mid]
right -= 1
return left, right
left, right = 0, len(nums)-1
while left <= right:
pivot_idx = randint(left, right)
pivot_left, pivot_right = tri_partition(nums, left, right, nums[pivot_idx], compare)
if pivot_left <= n <= pivot_right:
return
elif pivot_left > n:
right = pivot_left-1
else: # pivot_right < n.
left = pivot_right+1
nth_element(nums, k-1, compare=lambda a, b: a > b)
return nums[k-1]
# Time: O(n) on average, using Median of Medians could achieve O(n) (Intro Select)
# Space: O(1)
class Solution2(object):
# @param {integer[]} nums
# @param {integer} k
# @return {integer}
def findKthLargest(self, nums, k):
left, right = 0, len(nums) - 1
while left <= right:
pivot_idx = randint(left, right)
new_pivot_idx = self.PartitionAroundPivot(left, right, pivot_idx, nums)
if new_pivot_idx == k - 1:
return nums[new_pivot_idx]
elif new_pivot_idx > k - 1:
right = new_pivot_idx - 1
else: # new_pivot_idx < k - 1.
left = new_pivot_idx + 1
def PartitionAroundPivot(self, left, right, pivot_idx, nums):
pivot_value = nums[pivot_idx]
new_pivot_idx = left
nums[pivot_idx], nums[right] = nums[right], nums[pivot_idx]
for i in xrange(left, right):
if nums[i] > pivot_value:
nums[i], nums[new_pivot_idx] = nums[new_pivot_idx], nums[i]
new_pivot_idx += 1
nums[right], nums[new_pivot_idx] = nums[new_pivot_idx], nums[right]
return new_pivot_idx